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A B S T R A C T

Given the volatile nature of cryptocurrencies, accurately forecasting cryptocurrency volatility and under-
standing its determinants are crucial. This paper applies machine learning (ML) techniques to forecast
cryptocurrency volatility using internal determinants (e.g., lagged volatility, previous trading information)
and external determinants (e.g., technology, financial, and policy uncertainty factors). Both Random Forest
and Long Short-Term Memory (LSTM) networks significantly outperform traditional volatility models such as
GARCH. Furthermore, we explore two optimization models—Genetic Algorithm and Artificial Bee Colony—to
tune the hyper-parameters of LSTM. Our results indicate that the application of these optimization models sub-
stantially improves forecasting performance. Moreover, using SHapley Additive exPlanations, an interpretation
method, we find that internal determinants play the most important roles in volatility forecasts. Finally, our
results show that models trained with determinants from multiple cryptocurrencies outperform those trained
with determinants from a single cryptocurrency, suggesting that considering a broader range of determinants
can capture the complex dynamics in the cryptocurrency market.
1. Introduction

Blockchain technology, hailed as a transformative innovation, is
revolutionizing the financial industry. A significant by-product of this
technology is cryptocurrency, which is rapidly gaining acceptance
among consumers, businesses, and even governments. Major FinTech
companies such as Revolut and PayPal have embraced this trend by
facilitating access to the cryptocurrency market. In December 2021,
Visa, a global leader in digital payments, further substantiated this
shift by launching the Crypto Advisory. The number of transactions
continues to grow annually, with nearly 20,000 cryptocurrencies cur-
rently in circulation and a cumulative market value of approximately
US $2 trillion (Urquhart & Lucey, 2022). Bitcoin, the largest cryp-
tocurrency, leads the market in capitalization, reaching a peak value
of $1.27 trillion in November 2021, according to Coinmarketcap.1
However, as the cryptocurrency market is decentralized and lacks
governmental backing, it faces the risk of high volatility as well as pric-
ing bubbles (Corbet, Lucey, & Yarovaya, 2018). Therefore, accurately
forecasting cryptocurrency volatility becomes crucial.

Despite its importance, there has been relatively little focus in the
literature on forecasting cryptocurrency volatility. In this paper, we
aim to address this gap in the literature by using machine learning

∗ Corresponding author.
E-mail address: yijun.wang@ed.ac.uk (Y. Wang).

1 Coinmarketcap, a cryptocurrency industry utility that reports recently-traded prices for hundreds of cryptocurrencies, https://coinmarketcap.com/currencies/
bitcoin/.

(ML) techniques to achieve state-of-art time-series forecasting. We con-
sider both internal determinants (e.g., lagged volatility and trading
information) and external determinants (e.g., technology, financial and
policy uncertainty) as forecasting variables to forecast cryptocurrency
volatility.

Using ML techniques, including Random Forests (RF) and Long
short-term memory (LSTM), we provide forecasts of daily, weekly, and
monthly return volatility. We use Root Mean Squared Error, Mean
Absolute Percentage Error, Normalized Mean Squared Error, and Direc-
tional Accuracy to evaluate the performance of the forecasts. We find
our ML methods are better than the traditional volatility model, namely
Generalized Autoregressive Conditional Heteroskedasticity (GARCH),
to forecast volatility. More importantly, we explore two optimiza-
tion models—Genetic Algorithm and Artificial Bee Colony—to tune
the hyper-parameters of LSTM. Our results indicate that the applica-
tion of these optimization models substantially improves forecasting
performance.

To dissect the relative importance of forecasting variables in driving
cryptocurrency volatility, we adopt the ML interpretation method,
namely SHapley Additive exPlanations (SHAP). We find that the most
influential drivers are lagged volatility and moving average volatility.
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Among external drivers, technology factors (including Google search
volumes and certain blockchain factors) and financial factors (including
the adjusted close price of NASDAQ and S&P 500) are also influential
determinants.

Furthermore, we compare the universal model, trained on multiple
cryptocurrencies, with the cryptocurrency-specific model.2 This com-
arison is crucial in determining the appropriate predictors and the
ptimal data type (single versus multiple cryptocurrencies) to generate
he most accurate forecast. We find that the universal model outper-
orms the cryptocurrency-specific model, suggesting that considering a
roader range of determinants can capture the complex dynamics in
he cryptocurrency markets.

Our paper relates to the literature that applies time-series forecast-
ng to study financial assets. While ML models have been widely used in
orecasting stock returns (Chung & Shin, 2018; Siami-Namini & Namin,
018; Yun, Yoon, & Won, 2021), bond returns (Bianchi, Büchner, &
amoni, 2021), and cryptocurrency exchange rates (Chen, Xu, Jia,

Gao, 2021; Gradojevic, Kukolj, Adcock, & Djakovic, 2023), these
ethods are rarely used in forecasting cryptocurrency volatility. More-

ver, academics and practitioners have been increasingly attempting
o interpret these ‘‘black-box’’ models. Post-hoc interpretation methods
uch as SHAP have been used to understand the stock price direction
orecasting process (Yun et al., 2021). We contribute to this literature
n three ways.

First, to the best of our knowledge, we are the first paper to
se both internal and external factors to forecast the return volatility
f cryptocurrency. We also compare the predictability of multi-step-
head cryptocurrency volatility forecasts. ML techniques applied in this
tudy provide statistically optimal forecasts of cryptocurrency volatil-
ty, which makes valuable implications for managing cryptocurrencies.

Second, we apply SHAP to examine the relative importance of
he internal and external determinants in forecasting cryptocurrency
olatility. Understanding how determinants drive cryptocurrency
olatility is crucial as it could give us a deeper understanding of the
ryptocurrency market and its relations with other financial markets.

Finally, our state-of-the-art forecasts of cryptocurrency volatility
ave important implications for a diverse range of stakeholders, includ-
ng investors, financial institutions, policymakers, and academia. For
nvestors, volatility is an essential criterion for determining asset allo-
ation. Our volatility forecasts support more effective risk management
nd strategic asset allocation by hedging volatility, thereby optimizing
ortfolio performance. Additionally, financial institutions can leverage
nsights about blockchain technology and the relations among different
rypto-assets to develop innovative financial products, such as provid-
ng a fair price for derivatives anchored to cryptocurrency. Moreover,
olicymakers can use volatility forecasts to formulate strategies to pre-
ent market bubbles and reduce systemic risk. It can also contribute to
he future regulation of cryptocurrency derivatives. From an academic
erspective, the expanded application and framework of ML techniques
oster additional research in financial time-series forecasting. Further
esearch can build on our results to improve the ML algorithms for
etter predictive accuracy, to investigate a wide range of possible
eterminants, or to enhance ML interpretation.

The rest of this paper is structured as follows. Section 2 provides a
omprehensive review of related literature, focusing on the application
f ML in time-series forecasting and the deployment of optimization
odels and ML interpretation model. Section 3 introduces our Three-

tage framework of volatility forecasting. Section 4 provides details
bout the dataset and the determinants utilized for forecasting. Sec-
ion 5 outlines the specifics of time-series forecasting models and
iscusses two LSTM hyper-parameter optimization algorithms. Sec-
ion 6 describes the model evaluation and interpretation methods.
ection 7 presents the empirical results of our model’s forecasting
erformance and interpretation. Finally, Section 8 concludes the paper.

2 See Section 3 for the details of the universal model.
2

2. Related literature

This section reviews papers that are related to our study. Section 2.1
reviews studies that apply ML techniques to time-series forecasting in
the financial domain. Section 2.2 reviews the literature on LSTM hyper-
parameter optimization models. Section 2.3 discusses the studies that
use SHAP to interpret the forecasting process. Section 2.4 identifies the
gaps in the existing literature.

2.1. ML time-series forecasting applications

The application of ML and deep learning techniques in the fi-
nancial field has become popular in recent years, e.g., investment
prediction, risk management, and algorithmic trading (van Binsbergen,
Han, & Lopez-Lira, 2022; Nti, Adekoya, & Weyori, 2020; Ozbayoglu,
Gudelek, & Sezer, 2020). The demonstrated success of these techniques
in predicting stock market and commodity futures market performance
implies a promising potential for forecasting cryptocurrency volatility.
Table 1 encapsulates existing studies that deployed ML techniques for
financial forecasting, with a specific focus on cryptocurrency literature
presented in the lower part of the Table. Among the several ML
techniques that have been used for forecasting tasks, LSTM, a deep
learning technique, has risen to prominence because of its excellent
prediction performance from its learning ability from massive data
and the capability of handling the vanishing gradient problem of long-
term time-series data (Chung & Shin, 2018; Fischer & Krauss, 2018;
Siami-Namini & Namin, 2018). For instance, Sirignano and Cont (2019)
employ LSTM to forecast the direction of stock price movements,
comparing asset-specific models trained on specific stocks to universal
models trained on all stocks. The results show that the universal model
outperforms the asset-specific model, further demonstrating that LSTM
offers greater accuracy than linear models in prediction tasks. This
prowess of LSTM in capturing complex nonlinear patterns between
high-dimension features and outputs has been further substantiated by
various studies (Bengio, Goodfellow, & Courville, 2017). Moreover, Lim
and Zohren (2021) highlight that deep learning techniques have also
gained popularity for time-series forecasting in climate modelling, bio-
logical sciences, medicine, and retail areas. Motivated by these insights,
we use LSTM to forecast cryptocurrency volatility and compare the
universal model with cryptocurrency-specific models.

Up to now, the applications of ML algorithms to cryptocurrency time
series analysis have concentrated mainly on predicting cryptocurrency
prices and returns and mostly on Bitcoin, as summarized in the lower
part of Table 1. For instance, LSTM has been utilized to predict Bitcoin
exchange rate (Chen et al., 2021), Bitcoin price (Aggarwal et al., 2019),
and Bitcoin price changes (Chen et al., 2020), considering various ex-
ternal factors such as economic and technological elements. Moreover,
Random Forest (RF) has been used for forecasting Bitcoin returns,
showcasing its prowess in accurate Bitcoin prediction (Gradojevic et al.,
2023). Furthermore, Peng et al. (2018) combine the traditional GARCH
model with ML approaches (XGboost and SVR) for volatility estimation.
As far as we are aware, none of these works has considered using
ML techniques and exploring different factors in the cryptocurrency
volatility forecasting domain.

Existing research on cryptocurrency volatility relies mainly on eco-
nomic models such as GARCH (Trucíos, 2019), heterogeneous autore-
gressive (HAR) models (Shen, Urquhart, & Wang, 2020), and time-
varying parameter (TVP) regression (Bianchi, Guidolin, & Pedio, 2022).
For example, Bianchi et al. (2022) use TVP regression to predict the
weekly returns of cryptocurrencies considering market characteristics,
stock market predictors, and sentiment variables. The results show that
cryptocurrency is a new asset class, and the returns are less predictable,
which is quite different from the traditional asset classes. This study
motivates us to explore whether ML techniques could enhance pre-
dictability in the cryptocurrency market. Furthermore, Trucíos (2019)

compares GARCH-type models for Bitcoin’s daily volatility forecasting,
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Table 1
Summary of studies using ML techniques in the financial forecasting domain.

Authors (year) Target variable Dataset Input features Forecasting models Evaluation metrics

Chung and Shin
(2018)

Stock close price KOSPI
from Bloomberg

5 historical values
5 technical indicators

GA-LSTM MSE
MAE
MAPE

Siami-Namini and
Namin (2018)

Stock adjust close
price

Monthly financial
time series
from Yahoo Finance

historical values LSTM
ARIMA

RMSE

Yun et al. (2021) Stock movement KOSPI
from Yahoo Finance

5 historical values
7 technical indicators

GA-XGBoost
LSTM

Accuracy, F1,
Precision, Recall,
AUC

Fischer and Krauss
(2018)

Stock movement S&P 500 index
constituents
from Thomson
Reuters

240 day return sequences LSTM
RF
NN
logistic regression

Mean return
Standard deviation
Annualized Sharpe ratio
Accuracy

Sirignano and Cont
(2019)

Stock movement NASDAQ Level III
data
from LOBSTER data
engine

1000 stocks of order book
(supply & demand)

LSTM Accuracy

Bianchi et al. (2021) Bond return U.S Treasury price,
macroeconomic
dataset

yields-only variables,
128 monthly
macroeconomic
and financial variables

extreme trees
NN

R-square, MSPE

Chen et al. (2021) Bitcoin exchange
rate

Bitcoin exchange
rate
Economic factors
and
technology factors

1 historical values,
factors

ARIMA,
LSTM, SVR, ANFIS

RMSE, MAE,
MAPE, DA

Gradojevic et al.
(2023)

Bitcoin returns Hourly Bitcoin
exchange rate

20 technical indicators,
global spot Bitcoin volume,
Google search trend index

ANN, SVM, RF MSPE,
Sign statistic ex-post

Peng, Albuquerque,
de Sá, Padula, and
Montenegro (2018)

Cryptocurrency
volatility,
Currency volatility

Bitcoin, Ethereum,
Dash

historical values GARCH family models,
SVR

RMSE, MAE

Chen, Li, and Sun
(2020)

Change of Bitcoin
price

Bitcoin daily price
and
high-frequency price

Technology factors,
Investment and media
attention,
Gold spot price

XGboost, QDA,
SVM, LSTM,
Logistic Regression,
LDA

Accuracy, Precision,
Recall, F1

Aggarwal, Gupta,
Garg, and Goel
(2019)

Bitcoin price Bitcoin historical values,
Gold spot price,
Twitter sentiment

CNN,
LSTM,
GRU

RMSE

[a] The lower part of the Table is devoted to crypto literature.
[b] Table B.11 presents the summary of acronyms.
and Shen et al. (2020) use HAR models for Bitcoin volatility forecasting.
Their results emphasize the significance of jumps, outliers, and struc-
tural breaks in volatility forecasting. They motivate our investigation
into the predictive performance of daily, weekly, and monthly volatility
and the impact of outliers in forecasting using ML techniques.

Regarding forecasting variables, Catania and Grassi (2022) develop
a dynamic model for 606 cryptocurrencies accounting for the long
memory, asymmetries, and time-varying skewness and kurtosis in the
volatility process. The results show that including time-varying skew-
ness improves the forecasts of volatility. This motivates us to consider
internal factors (e.g., lagged volatility) in our forecasting process. More-
over, Conrad, Custovic, and Ghysels (2018) use the GARCH-MIxed
Data Sampling (MIDAS) model to extract long- and short-term volatil-
ity components of cryptocurrencies and investigate their relationship
with the financial market and macroeconomic activity. Their find-
ings demonstrate a strong connection between Bitcoin volatility and
global economic activity. Additionally, Jalan, Matkovskyy, Urquhart,
and Yarovaya (2022) report a significant positive impact of trust on in-
terest in and adoption of cryptocurrencies. Motivated by these findings,
we include various external factors, such as financial and uncertainty
factors, in our volatility forecasting.

2.2. LSTM hyper-parameter optimization models

LSTM is a complex model whose performance largely depends on
the hyper-parameter settings. Identifying the optimal hyper-parameter
set for LSTM is both time and computation-intensive; most current
3

research defaults to subjective approaches based on researchers’ experi-
ence to determine hyper-parameters. However, systematic approaches
and optimization models, like the genetic algorithm (GA) (Bouktif, Fiaz,
Ouni, & Serhani, 2018; Chung & Shin, 2018; Li, Li, Li, & Li, 2020), and
Artificial Bee Colony (ABC) (Kumar, Kumar, & Kumar, 2021; Yuliyono
& Girsang, 2019), have been employed for hyper-parameter tuning.
A detailed explanation of optimization methodology is provided in
Section 5.2.1. This Section concentrates on the relevant literature.

GA is an intelligent algorithm that simulates the heredity and
evolution of natural organisms to adapt to the environment. Given its
straightforward algorithmic process, fewer hyper-parameters, quicker
optimization speed, and superior results, GA finds a wide range of
applications in image processing, function optimization, signal process-
ing, and pattern recognition, among other fields. In finance, GA has
been utilized to determine the custom time window and the num-
ber of LSTM units for forecasting the daily stock index (Chung &
Shin, 2018). The optimization through GA has improved the learning
process’s efficiency and averted unnecessary computational processes.
Similarly, GA-LSTM has superior performance over LSTM in cable joint
temperature prediction (Li et al., 2020). There are two main reasons
we chose GA for tuning LSTM hyper-parameters. Firstly, GA-LSTM has
superior compatibility. Secondly, GA can find global optimal hyper-
parameters instead of local optimal hyper-parameters with steps of
selection, crossover, and variation (Bouktif et al., 2018).

ABC is a meta-heuristic method that emulates the foraging be-
haviour of bee colonies. It has been used to optimize hyper-parameters

for Bitcoin price prediction (Yuliyono & Girsang, 2019). The results
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show that ABC-LSTM outperformed LSTM without optimization. Kumar
et al. (2021) demonstrate the effectiveness of ABC-LSTM in stock
market forecasting, where the ABC algorithm effectively maintains the
equilibrium of exploitation and exploration issues.

2.3. Applications of ML interpretation

Given the black-box nature of LSTM, it needs more interpretation
regarding its final model results. Therefore, post-hoc interpretation
models that deploy simpler, interpretable surrogate models between
features and outputs have been employed. These models interpret the
trained networks and identify feature attributions based on the surro-
gate model (Lim & Zohren, 2021). For instance, SHAP utilizes Shapley
values from cooperative game theory to discern significant features.
More details about this are presented in Section 6.2. Yun et al. (2021)
use SHAP to interpret the results of both XGBoost and LSTM models
and highlight the critical features of stock prediction. Moreover, Babaei,
Giudici, and Raffinetti (2022) propose an explainable portfolio man-
agement approach for cryptocurrencies using SHAP. This approach
explains portfolio weights based on ML models combined with dynamic
Markowitz portfolio optimization. Another study by Fior, Cagliero,
and Garza (2022) employs SHAP to interpret the cryptocurrency price
prediction of XGBoost, considering blockchain-related, market, and
technical features.

2.4. Summary of gaps

In conclusion, to the best of our knowledge, although several studies
have addressed time-series forecasting in financial markets, several
critical gaps exist in cryptocurrency volatility forecasting. Specifically,
no research to date has compared the performance of the traditional
volatility model with the most promising ML and deep learning models.
Regarding predictors for the Bitcoin exchange rate, Chen et al. (2021)
and Gradojevic et al. (2023) have considered various determinants such
as blockchain information, macroeconomic, financial, and technical
indicators. However, no study has specifically examined the importance
of key internal determinants, like lagged volatility, and external de-
terminants, like blockchain information, in predicting cryptocurrency
volatility. Moreover, while (Sirignano & Cont, 2019) have demon-
strated that universal models outperform asset-specific models in stock
movement prediction, no research has drawn this comparison in the
cryptocurrency market. Finally, using hyper-parameter optimization
and ML interpretation models in cryptocurrency volatility forecasting
remains largely unexplored.

3. Three-stage framework of volatility forecasting

This paper aims to conduct a comprehensive exploration of cryp-
tocurrency volatility forecasting. We compare the traditional GARCH
model and various ML methods and investigate the determinants that
play important roles in the forecasts. When designing the methodology,
we consider that unlike exchange rates or prices, volatility is not
directly accessible and needs to be estimated. We also consider the
need for interpretation as the oft-cited criticism of ML methods being
black boxes. Therefore we organize our methodology in a Three-Stage
experiment:

• Stage I Data Processing: We separately estimate the daily,
weekly, and monthly volatility for the chosen cryptocurrencies
and prepare the internal and external determinants. Details are
given in Section 4.

• Stage II Time-series Forecasting Model: This forms the core
stage of the comparison experiments. For model fitting, we apply
4

both the traditional GARCH method and ML models, including RF
and LSTM, for forecasting. We also compare forecasting accuracy
using both internal and external determinants. The models are
distinguished into two types:

– Cryptocurrency-specific model is trained with determinants
from a single cryptocurrency.

– Universal model is trained with determinants from multiple
cryptocurrencies.

For model tuning, we use methods to find the optimal hyper-
parameters of ML models. Details are given in Section 5.

• Stage III Model Evaluation & Interpretation: Post-forecasting,
we use different evaluation metrics to assess model performance.
We employ SHAP to interpret our best-performing models and
identify significant determinants. Details are given in Section 6.

The workflow of our Three-Stage experiment is presented in Fig. 1.

4. Dataset

This paper examines the internal and external determinants used
by ML approaches for forecasting cryptocurrency volatility, which is
the predictive target variable in all models. The internal determinants
fall into three categories: lagged volatility, moving average volatility,
and previous trading information, detailed further in Section 4.2. We
also have three categories of external determinants, namely technology,
financial, and policy uncertainty factors, presented in Section 4.6.
Table 2 lists the data collected for this study.

4.1. Cryptocurrency dataset

4.1.1. Cryptocurrency price data
To limit our analysis to the most popular and capitalized cryp-

tocurrencies, we collected the daily open, high, low price, trading
volume, trading count, and time of Bitcoin (BTC), Ethereum (ETH),
Litecoin (LTC) and Ripple (XRP) from Coin-API.3 The close price of
cryptocurrencies is collected every 30 min in one day from November
1, 2017, to July 31, 2022.

4.1.2. Volatility estimation
The volatility analysis is based on cryptocurrency returns instead of

the price evolution. The daily volatility index, VOL_1 is calculated as
logarithmic percentage change taken from measurements taken at the
spot close price every 30 min. The settlement price is calculated from
48 snaps over 24 h. The weekly volatility index, VOL_7, is calculated
with the settlement price from 336 snaps over seven days. The monthly
volatility index, VOL_30 is calculated with the settlement price from
1440 snaps over 30 days. The calculation equations refer to the BitMEX
platform.4 The calculation equation is presented as follows. P = Last
Price (taken at 30 min intervals); STD = Sample Standard Deviation;
n = Natural Logarithm; Sqrt = Square Root.

OL_1 = STD
(

Ln
(

𝑷 1∕𝑷 0
)

,Ln
(

𝑷 2∕𝑷 1
)

,… ,Ln
(

𝑷 48∕𝑷 47
)))

∗ Sqrt(48)

(1)

VOL_7 = STD
(

Ln
(

𝑷 1∕𝑷 0
)

,Ln
(

𝑷 2∕𝑷 1
)

,… ,Ln
(

𝑷 336∕𝑷 335
)))

∗ Sqrt(336) (2)

VOL_30 = STD
(

Ln
(

𝑷 1∕𝑷 0
)

,Ln
(

𝑷 2∕𝑷 1
)

,… ,Ln
(

𝑷 1440∕𝑷 1439
)))

∗ Sqrt(1440) (3)
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Fig. 1. A Three-Stage experiment workflow.
Table 2
List of data.

Data category Data Source Time frequency

Cryptocurrency data Close price Coin-API Every 30 min
Open, High, Low price
Trading volume, Trading count,
Time

Coin-API Daily

Technology data Blockchain data Average block size,
Average transactions per block,
Average payments per block,
Average confirmation time, Hash
rate, Difficulty

Blockchain.com Mixed-frequency

Google trend data Cryptocurrency, Blockchain,
Bitcoin

Google Trends Data-store Daily

Crypto sentiment data Crypto Fear & Greed Index Bitcoin fear Daily

Financial data Adjust close price and Trading
volume for Oil, Gold, Silver, DJI,
S&P 500, NASDAQ,
Russell 2000

Yahoo YQL
Finance API

Daily

Exchange rate (Yuan-USD, USD-Euro) Daily

Policy uncertainty data US daily news index Economic policy uncertainty Daily
From the time-series plot presented in Fig. 2, we observe that the
daily volatilities of Bitcoin and Ethereum generally lie between the
zero line and 0.3. In contrast, the volatilities of Litecoin and Ripple
are slightly higher, ranging between the zero line and 0.4. Interest-
ingly, these four cryptocurrencies display their most significant value
at around the exact dates, indicating potentially correlated behaviour,
except for Ripple, which shows more substantial fluctuations between
September 2020 and April 2021 during the Covid-19 pandemic. As

3 CoinAPI, a platform that provides fast, reliable and unified data APIs to
the cryptocurrency market, https://www.coinapi.io/.

4 BitMEX, an advanced cryptocurrency exchange, and derivative trading
platform, https://www.bitmex.com/.
5

we move to weekly and monthly volatility, the volatility generally
increases, resulting in less frequent but more substantial fluctuations.
This pattern can be particularly evident when comparing the daily
with weekly and monthly volatility. The descriptive statistics for the
volatility indices of these four cryptocurrencies are presented in Ta-
ble 3. Bitcoin demonstrates the least average volatility, while Ripple
displays the highest average volatility, peaking at a substantial 5.4%.
Furthermore, Litecoin’s daily volatility exhibits the most extreme be-
haviour, displaying a kurtosis coefficient of 20.05, which indicates a
distribution with heavier tails and sharper peaks compared to a normal
distribution. Conversely, the monthly volatilities show relatively less
extreme behaviour, except Litecoin.

The Augmented Dickey–Fuller Test (ADF), a well-known unit root
test, was employed to assess the stationarity of the volatility time series.

https://www.coinapi.io/
https://www.bitmex.com/
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Fig. 2. Time-series of cryptocurrency volatility.
Table 3
Descriptive statistics and ADF test for cryptocurrency volatility.

Count Mean Std Min 25% 50% 75% Max Skewness Kurtosis ADF statistic 𝑃 -value

BTC_VOL_1 1673.0 0.036 0.024 0.003 0.021 0.030 0.044 0.288 2.738 14.710 −7.819 0.00000
BTC_VOL_7 1673.0 0.101 0.053 0.020 0.070 0.089 0.115 0.443 2.002 6.378 −5.469 0.00000
BTC_VOL_30 1673.0 0.222 0.103 0.074 0.160 0.195 0.248 0.805 1.966 5.253 −5.333 0.00000

ETH_VOL_1 1673.0 0.046 0.029 0.006 0.029 0.039 0.056 0.323 2.956 16.230 −10.421 0.00000
ETH_VOL_7 1673.0 0.130 0.062 0.039 0.090 0.115 0.154 0.474 2.089 6.533 −5.955 0.00000
ETH_VOL_30 1673.0 0.284 0.113 0.122 0.210 0.257 0.319 0.791 1.780 3.692 −5.230 0.00001

LTC_VOL_1 1673.0 0.052 0.031 0.011 0.033 0.045 0.063 0.393 3.172 20.050 −6.257 0.00000
LTC_VOL_7 1673.0 0.145 0.066 0.041 0.102 0.128 0.173 0.529 1.995 6.225 −5.263 0.00001
LTC_VOL_30 1673.0 0.318 0.126 0.135 0.243 0.281 0.364 1.077 2.086 6.777 −6.181 0.00000

XRP_VOL_1 1673.0 0.054 0.043 0.010 0.028 0.041 0.063 0.469 3.230 15.953 −6.884 0.00000
XRP_VOL_7 1673.0 0.153 0.099 0.045 0.093 0.123 0.177 0.667 2.156 5.405 −5.492 0.00000
XRP_VOL_30 1673.0 0.340 0.185 0.116 0.216 0.282 0.387 1.145 1.793 3.415 −4.294 0.00046
The null hypothesis of the ADF test posits that the time series is non-
stationary, exhibiting a unit root, whereas the alternate hypothesis
asserts that the time series is stationary and devoid of a unit root. As
reported in Table 3, the results of the ADF test convincingly rejected the
null hypothesis at a 1% significance level, affirming that all the time
series are stationary and without unit roots.

Two additional diagnostic tools, the Autocorrelation Function (ACF)
and the Partial Autocorrelation Function (PACF), are employed to
analyse the internal dynamics of the series. The ACF plots (Fig. C.12(a))
exhibit the correlation coefficients between the current value and its
lagged values, while the PACF plots (Fig. C.12(b)) depict the partial cor-
relation between the series and its own lags after removing the effects
of intermediate lags. All the ACF plots exhibit a tail-off pattern, where
the correlation decays to zero slowly, implying a persistent influence
of shocks on the time series. Moreover, the PACF plots indicate that
the first four lags are significant for daily volatility, whereas the first
five lagged volatilities are significant for Ripple. These observations
underscore the need to incorporate past lags when modelling the
dynamics of these cryptocurrencies’ volatilities.

4.2. Summary of internal determinants

According to Liu and Tsyvinski (2021) and Liu, Tsyvinski, and Wu
(2022), a significant time-series momentum phenomenon in the cryp-
tocurrency market indicates that past historical data can provide pre-
dictive value for the future. Therefore, we incorporate lagged volatility
and moving volatility averages as internal predictors. Given the unique
nature of cryptocurrencies being traded 24 h a day, seven days a week,
unlike traditional financial markets like stocks and bonds, which halt
transactions overnight and on weekends, we select a seasonal lag of
seven.
6

For daily volatility (VOL_1), we examine lagged volatilities of the
past 28 days (𝑙𝑎𝑔_1, 𝑙𝑎𝑔_2, …, 𝑙𝑎𝑔_28) and moving average one lagged
volatilities of different orders: fast (𝑚𝑎_3, 𝑚𝑎_5, 𝑚𝑎_7); slow (𝑚𝑎_21,
𝑚𝑎_28, 𝑚𝑎_35). For weekly volatility (VOL_7), we consider weekly
lagged volatilities (𝑙𝑎𝑔_7, 𝑙𝑎𝑔_8, …, 𝑙𝑎𝑔_14) and moving average seven
lagged volatilities of various orders (𝑚𝑎_3, 𝑚𝑎_5, 𝑚𝑎_7). For monthly
volatility (VOL_30), we explore monthly lagged volatilities (𝑙𝑎𝑔_30,
𝑙𝑎𝑔_31, …, 𝑙𝑎𝑔_37) and moving average thirty lagged volatilities of
different orders (𝑚𝑎_3, 𝑚𝑎_5, 𝑚𝑎_7). Additionally, we include several
other determinants in our dataset: daily open price, close price, high
price, low price, trading volume, and trading count, all with a lag of
one day, seven days, and thirty days respectively, for daily, weekly
and monthly volatilities. Table C.13 presents the descriptive statistics
of several other internal determinants. Hence, the number of internal
determinants for VOL_1, VOL_7, and VOL_30 are 40, 17, and 17,
respectively. The correlation analysis results, presented in Table C.12,
indicate that lagged volatility, moving average volatility, and trading
volume are significantly correlated with the volatility of our chosen
cryptocurrencies. Furthermore, compared to Bitcoin and Ethereum, the
volatility of Litecoin and Ripple exhibits a stronger correlation with the
previous day’s trading count.

4.3. Technology dataset

We choose three types of technology predictors, namely Blockchain
data, Google Trend data, and Crypto Sentiment data. The difference be-
tween cryptocurrencies and other financial products is that they rely on
Blockchain technology to make transactions. Besides, as new technol-
ogy is introduced, the social media attitude towards the cryptocurrency
market could play an important role. According to Chen et al. (2021)
and Liu and Tsyvinski (2021), these technological factors have the
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power to predict the cryptocurrency market. Blockchain data presents
the adaptation of the cryptocurrency in the whole Blockchain system.
Moreover, according to studies by Akyildirim, Corbet, Lucey, Sensoy,
and Yarovaya (2020) and Smales (2022), an increase in investor atten-
tion correlates with higher volatility. Thus, we examine whether Google
Trend data, which provides insights into search frequency trends for
specific terms (like cryptocurrency names), and Crypto Sentiment data,
which represents public sentiment towards cryptocurrencies, can as-
sist in predicting the cryptocurrency market. Consequently, we have
incorporated these three types of technological predictors in our study.

4.3.1. Blockchain data
The following Blockchain predictors are considered in our study,

with data collected from Blockchain Charts from January 1, 2018,
to July 31, 2022, at mixed frequency intervals.5 We incorporate the
Average Block Size, which refers to the average size of blocks in
the Blockchain network measured in megabytes over the past 24 h.
The Average Transactions Per Block indicates the average number of
transactions per block over the past 24 h, while Average Payments Per
Block describes the average number of payments per block during the
same period. We also consider the Average Confirmation Time, which
denotes the average time taken for a transaction (that includes miner
fees) to be included in a mined block and added to the public ledger.
The Hash Rate, another predictor used in this study, is the estimated
number of terahashes per second the Bitcoin network performs in the
last 24 h. Lastly, the Difficulty metric reflects the difficulty encountered
in mining a new block for the Blockchain. These variables provide
insightful aspects of the Blockchain network’s operations.

4.3.2. Google trend data
Google Trend index presents the public attention to the keyword.6

We collect the worldwide historical search volume considering
‘‘Blockchain’’, ‘‘cryptocurrency’’, and ‘‘Bitcoin’’ as our keywords. This
index is from January 1, 2018, to July 31, 2022, accounting for 1673
observations.

4.3.3. Crypto sentiment data
Crypto Fear & Greed Index presents the emotions and sentiments

towards the prominent cryptocurrencies from various sources such
as social media and dominance.7 There are five attitudes Extreme
Greedy (market correction); Greedy; Neutral; Fear, and Extreme Fear
(too worried and a buying opportunity). This index is collected from
February 1, 2018, to July 31, 2022, accounting for 1685 observations
with 185 Extreme Greedy; 304 Greedy; 150 Neural; 547 Fear, and 453
Extreme Fear.

4.4. Financial dataset

We choose two types of financial predictors, namely macroeconomic
data and currency ratio obtained using Yahoo Finance’s API using
Python package yahoo-finance.8 According to Chen et al. (2021), finan-
cial predictors effectively predict the Bitcoin exchange rate. Thus, this
research considers the adjusted close price (Adj) and the trading volume
(V) for Oil, Gold, Silver, Dow Jones Industrial Average (DJI), S&P
500, NASDAQ, and Russell 2000 as our macroeconomic predictors and
exchange rate for Yuan-USD and USD-Euro as currency ratio predictors.
According to Alexander and Dakos (2020), the trading volume of the
cryptocurrency influenced the investors’ decision, which suggested one
could explore the trading volume of other financial markets that will
affect cryptocurrency volatility.

5 Blockchain Charts: https://www.blockchain.com/en/.
6 Google Trends database: https://trends.google.com/trends.
7 Crypto Fear & Greed Index: https://alternative.me/crypto/fear-and-

reed-index/.
8 Yahoo! Finance’s API: https://pypi.org/project/yfinance/.
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4.5. Policy uncertainty dataset

Baker, Bloom, and Davis (2016) develop a new index of economic
policy uncertainty (EPU) based on newspaper coverage frequency.9
According to Cheng and Yen (2020) and Yen and Cheng (2021), EPU
can predict Bitcoin monthly volatility and returns. We collect the daily
news-based EPU from January 1, 2018, to July 31, 2022, accounting
for 1673 observations.

4.6. Summary of external determinants

Table C.14 presents the descriptive statistics for external deter-
minants. Fig. C.13 presents the normalization data plot for external
determinants. Therefore, the final external determinants are 27.

4.7. Data prepossessing

Before Stage II Forecasting models, data processing is necessary,
employing data cleaning, transformation, and division. The linear in-
terpolation method is used to input the missing value in data cleaning
and dealing with mixed-frequency data processing. We assume the data
is known at two time points 𝑟 < 𝑡 < 𝑠. Then the equation of missing
value 𝑃𝑖𝑡 is presented below.

𝑃𝑖𝑡 =
(𝑡 − 𝑠)𝑃𝑟,𝑡−1 + (𝑟 − 𝑡)𝑃𝑠,𝑡−1

𝑟 − 𝑠
(4)

The corresponding date of the missing value is removed. For data
transformation, Min–Max normalization is adopted to scale input fea-
tures between 0 and 1, which avoids the bias from outliers and pre-
serves the relationships among features (Patro & Sahu, 2015). The
target variable is not scaled using Min–Max normalization as its values
predominantly fall between 0 and 1, except for the maximum monthly
volatility for Litecoin and Ripple, which hover around 1.1. The equation
is presented as follows:

𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
(5)

For Stage II, we use 80% of the data from February 5, 2018,
to August 10, 2021, as the training set. The remaining 20% of the
data, from August 11, 2021, to July 31, 2022, is used as the test
set. The test set allows us to perform out-of-sample forecasts for cryp-
tocurrency volatility. For ML models, we employ a Time Series Split
Cross-Validation technique with five splits to tune the hyper-parameters
for the training set optimally. In this method, the validation set is the
section after the training set, respecting the temporal order of the data.
This approach prevents look-ahead bias, enhancing the generalizability
and robustness of our forecasting models.

5. Time-series forecasting models

This section elaborates on the forecasting models used in Stage
II of our experiment. We utilize several models, each with its dis-
tinct strengths and approaches. We use RF and LSTM to provide a
comparison with data-driven techniques. RF, an ensemble learning
method renowned for its robustness, has been widely used in time-
series forecasts due to its superiority of handling high-dimensional
and non-linear data (Alessandretti, ElBahrawy, Aiello, & Baronchelli,
2018; van Binsbergen et al., 2022). LSTM is one of the state-of-the-art
models for time-series forecasting due to its ability to learn long-term
dependencies. This characteristic has led to success in forecasting tasks
such as Bitcoin price prediction (McNally, Roche, & Caton, 2018). To
further improve the LSTM model’s performance, we employ optimiza-
tion algorithms to fine-tune the hyperparameters of LSTM. We also
consider the GARCH model, which is widely used in the literature as a
benchmark for forecasting. The details of the GARCH model are present
in Appendix A.

9 Economic Policy Uncertainty Index: http://www.policyuncertainty.com/
ndex.html.

https://www.blockchain.com/en/
https://trends.google.com/trends
https://alternative.me/crypto/fear-and-greed-index/
https://alternative.me/crypto/fear-and-greed-index/
https://pypi.org/project/yfinance/
http://www.policyuncertainty.com/index.html
http://www.policyuncertainty.com/index.html
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Table 4
List of hyper-parameters of RF.

Hyper-parameter Range value Interval

Max depth of the tree (4, 20) 2
Min samples splits (2, 10) 2
The number of trees (8, 128) 8

5.1. Random forest (RF)

RF is one of the most effective ML models for time-series forecasting
tasks and was first proposed by Breiman (2001). RF is an ensemble
learning model that builds on multiple decision trees and aggregates
their outputs to enhance predictive power. It is designed to mitigate
the overfitting problem commonly seen in decision tree models, and its
versatility makes it suitable for both regression and classification tasks.

A unique feature of RF is that it uses a method known as ‘‘bootstrap
aggregating’’ or ‘‘bagging’’, coupled with random subspace selection.
This approach enhances model stability and performance by reducing
the variance and preventing overfitting. For time-series data, RF applies
a variant of all 𝐵 bootstrap aggregating called block bootstrap to
account for temporal dependencies. The final forecast in RF, as shown
in Eq. (6), is obtained by averaging the outputs of each tree (Masini,
Medeiros, & Mendes, 2023).

𝑌𝑡+ℎ∣𝑡 =
1
𝐵

𝐵
∑

𝑏=1

[ T𝑏
∑

𝑖=1
𝛽𝑖,𝑏𝐵𝐽𝑖,𝑏

(

𝑿𝑖; 𝜃̂𝑖,𝑏
)

]

. (6)

Here, 𝑌𝑡+ℎ∣𝑡 represents the final forecast of the target variable, which is
the cryptocurrency volatility, at a future time step 𝑡 + ℎ. 𝐵 represents
the number of bootstrap samples. 𝑏 represents each individual bootstrap
sample. T𝑏 represents the size of the subset in the 𝑏th sample. 𝛽𝑖,𝑏:
represents the weight assigned to the 𝑖th tree in the 𝑏th bootstrap
sample. 𝐵𝐽𝑖,𝑏

(

𝑿𝑖; 𝜃̂𝑖,𝑏
)

is the prediction made by the 𝑖th tree in the
𝑏th bootstrap sample for the input features 𝑿𝑖. The prediction is based
on the estimated parameters 𝜃̂𝑖, 𝑏 and the specific path determined by
the parent nodes indexed by 𝐽𝑖. The predictions of all trees in the 𝑏th
bootstrap sample are weighted by 𝛽𝑖,𝑏 and summed up.

To optimize the RF’s hyper-parameters, we adopt the Grid Search
method (Probst, Wright, & Boulesteix, 2019). The search is performed
over a defined space of potential hyper-parameter values and utilizes
time-series split cross-validation (with the number of splits set at 5) to
evaluate the performance of each combination. The hyper-parameters
and their respective range of values are provided in Table 4. These
hyper-parameters ensure that the model’s complexity is appropriately
balanced to avoid overfitting or underfitting, thereby contributing to
more accurate and reliable volatility forecasts.

5.2. Long short-term memory (LSTM) networks

LSTM, a type of Recurrent Neural Network (RNN), was introduced
by Hochreiter and Schmidhuber (1997) and has been widely used in
deep learning, particularly for tasks involving time-series data. Com-
pared to standard RNNs, LSTM is specifically designed to address
the challenges of exploding and vanishing gradients during the back-
propagation process (Goodfellow, Bengio, & Courville, 2016). This
capability is particularly valuable for capturing long-term dependencies
and patterns when forecasting cryptocurrency volatility.

The unique architecture of one LSTM block includes the cell state 𝑐𝑡
and three types of gates: the input gate, the forget gate, and the output
gate. Refer to Fig. 3 for an illustration of the LSTM network structure.
The cell state stores information through sequence processing, reducing
the impact of short-term memory and acting as a form of ‘‘memory’’
for the network. The input gate controls the flow of new information
into the cell state, the forget gate controls the flow of information from
the previous cell state, and the output gate provides the activation
8

Fig. 3. LSTM network structure.

for the final output of the LSTM block at timestamp 𝑡. These gates
utilize sigmoid activation functions (𝑖𝑡, 𝑓𝑡, 𝑜𝑡) to manage the flow of
information into, within, and out of the LSTM block, as illustrated
in Eq. (7):

𝐼𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 ∶ 𝑖𝑡 = 𝜎
(

𝑤𝑖
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑖
)

𝐹𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒 ∶ 𝑓𝑡 = 𝜎
(

𝑤𝑓
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑓
)

𝑂𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 ∶ 𝑜𝑡 = 𝜎
(

𝑤𝑜
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑜
)

.

(7)

Here, 𝜎 denotes the sigmoid function; 𝑤𝑖, 𝑤𝑓 , and 𝑤𝑜 denote the
weights of neurons for the respective gate (i, f, o); ℎ𝑡−1 denotes the
output of the LSTM block at timestamp 𝑡− 1; 𝑥𝑡 represents the input at
the current timestamp; and 𝑏𝑖, 𝑏𝑓 , and 𝑏𝑜 denote biases of neurons for
the respective gate (i, f, o). The gates modify the candidate cell state,
cell state, and the hidden state of the LSTM as follows:

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 ∶ 𝑐𝑡 = tanh
(

𝑤𝑐
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑐
)

𝐶𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 ∶ 𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐𝑡
𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 ∶ ℎ𝑡 = 𝑜𝑡 ∗ tanh

(

𝑐𝑡
)

.

(8)

Here, 𝑤𝑐 and 𝑏𝑐 denote the weights and biases of neurons for the can-
didate cell state, respectively. The hidden state represents the output
of the LSTM block and is passed on to the next timestamp, allowing
the LSTM to maintain and update its internal state as it processes the
sequence of inputs. During the training process, the LSTM minimizes
the loss function, using Mean Squared Error, to find the optimal set of
weights and biases. These learned weights enable the LSTM to control
its memory process effectively. As a result, the model can remember
crucial information and forget irrelevant details over extended periods.
Furthermore, multivariate LSTM models can handle more than two
input time series at the same timestamp, where we incorporate several
determinants to forecast cryptocurrency volatility.

There are several hyper-parameters for LSTM. The number of LSTM
neurons within a layer can have a significant impact on accuracy,
with a higher number of nodes potentially enhancing accuracy, while
a lower number may lead to overfitting issues. The dropout rate is
employed to mitigate overfitting problems by reducing sensitivity to
specific weights of individual neurons. Additionally, the learning rate
defines the update speed of the network hyper-parameters, thereby
influencing the overall convergence and stability of the LSTM network.

5.2.1. LSTM hyper-parameters optimization algorithms
As the time complexity of LSTM increases with the dataset’s size

increase, we choose two optimization algorithms, including GA and
ABC, to tune the number of LSTM neurons, dropout, and rate learning
rate. Table 5 presents the hyper-parameters and the range value of
LSTM in this research.



International Review of Financial Analysis 90 (2023) 102914Y. Wang et al.

m
i
l
g
m
p

b
n
G
g
0
p
G
w
t
i
e
r
o
o
p
d

b
2
b
f
i
a
s

s
L
p
i
o
m
t
h
e
s
a
i
1
n

6

t
e

6

a
t
t
o
v
v
S

𝑔

w
i
t
t

Table 5
List of optimized hyper-parameters of LSTM.

Hyper-parameter Range value

Number of LSTM neurons 16, 32, 64, 128, 256
Dropout rate 0.0, 0.1, 0.2, 0.3, 0.4
Learning rate 0.0001, 0.001, 0.01

Batch size 16, 32, 64
Epochs 50, 100
Optimizer Adam, RMSprop

[a] The lower part of the Table is the hyper-parameters that use the
Random search method.
[b] The default LSTM in our research is 128 neurons, followed by a
dense layer with 1 neuron, using the Adam optimizer with a mean
squared error loss function for 50 epochs and a batch size of 64.

Genetic Algorithm (GA) is a meta-heuristic and stochastic opti-
ization algorithm inspired by the principles of natural evolution,

nitially proposed by Holland (1992). GA emulates genetic and evo-
utionary principles to search the solution space, optimizing the tar-
et function. The key feature of GA lies in the concept of ‘‘chro-
osomes’’. Each chromosome represents a potential solution to the
roblem, typically encoded in binary strings.

The genetic search process for tuning LSTM hyper-parameters can
e delineated into six steps: initialization, fitness calculation, termi-
ation condition check, selection, crossover, and mutation. For our
A implementation, we set the population size to 50, the number of
enerations to 10, the crossover rate to 0.8, and the mutation rate to
.15. Each chromosome in our context encodes different LSTM hyper-
arameters, and chromosomes are used to calculate the fitness of the
A. We adopt Root Mean Square Error (RMSE) as the fitness function,
here the configuration that results in the smallest RMSE is considered

he optimal set of hyper-parameters. The population of chromosomes
s initially assigned random values. Selection and recombination op-
rators then search for the optimal solution in this population. If the
esulting solution satisfies the termination criteria, it is deemed the
ptimal solution. Otherwise, the genetic process is repeated until an
ptimal solution is found, thus allowing the GA to tune the hyper-
arameter space of the LSTM model efficiently. We use Python package
eap to apply GA optimization.

Artificial Bee Colony (ABC) is a meta-heuristic technique inspired
y the foraging characteristics of bees, first introduced (Karaboga et al.,
005) to minimize the objective function. There are three types of
ees in ABC: employed bees, which are responsible for searching for
ood sources; onlooker bees, which participate in exploiting food on
nformation received from employed bees in the form of waggle dance;
nd scout bees, which are responsible for searching for a new food
ource.

The optimization process of ABC is carried out in the following
teps. First, the initial solutions are randomly generated from the sets of
STM hyper-parameters. Second, train LSTM with these initial hyper-
arameters, and evaluate and record the lowest fitness function, which
s RMSE in this research. Third, the employed bee considers the RMSE
f the initial solution and generates the sets of hyper-parameters to
inimize RMSE. Then, onlooker bees choose the best hyper-parameters

o minimize RMSE. Lastly, suppose the attempts to generate sets of
yper-parameters are above the abandon limit value. In that case, the
mployed bee becomes a scout and generates a new hyper-parameter
et. The above process is reported until the maximum number of cycles
nd finds the optimal solution with the lowest RMSE. For our ABC
mplementation, we set the dimension to 3, the solution number to
0, the population size to 20, the limit to 7, and the maximum cycle
umber to 15. We use Python package Hive to apply ABC optimization.

. Model evaluation and interpretation

This section elucidates the details of Stage III of our experiment. Sec-
ion 6.1 introduces the evaluation metrics utilized to evaluate our mod-
9

ls. Section 6.2 introduces the model interpretation method, SHAP, to
identify significant determinants in forecasting cryptocurrency volatil-
ity.

6.1. Model evaluation

To evaluate the performance of the models outlined above, we com-
pute four metrics: Root Mean Squared Error (RMSE), Mean Absolute
Percentage Error (MAPE), Normalized Mean Squared Error (NMSE),
and Directional Accuracy (DA). The first three metrics are commonly
used in regression tasks, and the lower value suggests a better model
fit. NMSE and MAPE are presented in percentage format, indicating
the average deviation in percentage terms. Moreover, DA measures the
model’s ability to predict the direction of changes. A higher value of DA
indicates superior forecasting performance. DA presents a perspective
on the accuracy of the direction prediction of cryptocurrency volatility,
a particularly valuable insight in the context of financial forecasting
and investment decisions. The four metrics are defined as follows, 𝑦̂𝑡
corresponds to the volatility forecast for time 𝑡, 𝑦 is the actual volatility
at time 𝑡 and 𝑛 represents the number of forecast time periods:

• RMSE measures the average magnitude of the error, providing a
way to quantify the discrepancy between the predicted and actual
values:

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑡=1

(

𝑦𝑡 − 𝑦̂𝑡
)2 (9)

• MAPE computes the average absolute percentage difference be-
tween the actual and predicted values, providing an indication of
relative error:

MAPE = 1
𝑛

𝑛
∑

𝑡=1

|

|

𝑦𝑡 − 𝑦̂𝑡||
𝑦𝑡

(10)

• NMSE measures the average squared relative error between the
predicted values and actual values:

NMSE = 1
𝑛

𝑛
∑

𝑡=1
(
𝑦𝑡 − 𝑦̂𝑡
𝑦𝑡

)2 (11)

• DA measures the model’s ability to predict the direction of
changes:

DA = 100
𝑛

𝑛
∑

𝑡=1
𝑑𝑡,

𝑑𝑡 =

{

1,
(

𝑦𝑡 − 𝑦𝑡−1
) (

𝑦𝑡 − 𝑦̂𝑡−1
)

≥ 0
0, otherwise

(12)

.2. Model interpretation

SHapley Additive exPlanations (SHAP) developed by Lundberg
nd Lee (2017) is a method to explain individual predictions based on
he game theoretically optimal Shapley values. The objective of SHAP is
o interpret the prediction of instance 𝑥 by computing the contribution
f each feature to the forecasting process, which computes the Shapley
alue based on joint game theory. SHAP is the interpretation of Shapley
alues as an additive feature attribution method, a linear function.
HAP specifies the explanation as:

(

𝑧′
)

= 𝜙0 +
𝑀
∑

𝑗=1
𝜙𝑗𝑧

′
𝑗 (13)

here 𝑔 is the explanation model, 𝑧′ ∈ {0, 1}𝑀 is the coalition vector, M
s the maximum coalition size, 𝜙𝑗 ∈ R is the feature attribution for fea-
ure 𝑗, and summing the effects of all feature attributions approximate
he output 𝑓 (𝑥) of the original model.

SHAP satisfies three desirable properties: local accuracy, missing-
ness, and consistency.
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• Local accuracy: requires the explanation model 𝑔 to at least match
the output of 𝑓 for the input 𝑥′, when approximating the original
model 𝑓 for the input 𝑥.

𝑓 (𝑥) = 𝑔
(

𝑥′
)

= 𝜙0 +
𝑀
∑

𝑗=1
𝜙𝑗𝑥

′
𝑗 (14)

• Missingness: a missing feature, where 𝑥′𝑖 = 0, with no importance.

𝑥′𝑗 = 0 ⇒ 𝜙𝑗 = 0 (15)

• Consistency: the attribution assigned to the feature will increase
or stay the same, even if we change the model. Let 𝑓𝑥

(

𝑧′
)

=
𝑓
(

ℎ𝑥
(

𝑧′
))

and 𝑧′−𝑗 indicate that 𝑧′𝑗 = 0. For any two models 𝑓
and 𝑓 ′ satisfy:

𝑓 ′
𝑥
(

𝑧′
)

− 𝑓 ′
𝑥

(

𝑧′−𝑗
)

≥ 𝑓𝑥
(

𝑧′
)

− 𝑓𝑥
(

𝑧′−𝑗
)

(16)

for all inputs 𝑧′ ∈ {0, 1}𝑀 , then 𝜙𝑗
(

𝑓 ′, 𝑥
)

≥ 𝜙𝑗 (𝑓, 𝑥).

SHAP Feature Importance: features with large absolute Shapley
values play an important role in forecasting. The global importance is
the average of the absolute Shapley values per feature across the data
shown as:

𝐼𝑗 =
1
𝑛

𝑛
∑

𝑖=1

|

|

|

𝜙(𝑖)
𝑗
|

|

|

(17)

SHAP is based on the size of feature attributes and calculates
the feature importance by comparing the model predictions with and
without the feature, which is a fair process for comparison to show
the influence of the input feature in the forecasting process. The im-
pact of the features of the forecasting model is presented as a bar
plot to show the global importance of features. Besides, the SHAP
summary plot combines feature importance with feature effect, which
presents the distribution of the Shapely values of each feature. In this
study, we adopt the training set as the background dataset and use
Python package shap to apply DeepExplainer to compute SHAP values
(known as Deep SHAP) that are based on relations between SHAP
and Deep Learning Important FeaTures (DeepLIFT) algorithm, proposed
by Shrikumar, Greenside, and Kundaje (2017). Deep SHAP combines
Shapley values for small components with the whole network through
the Deep LIFT multipliers and backwards through the network.

7. Empirical results

As shown in the experiment framework in Section 3, the main
objective of our paper is to achieve the most accurate forecasts of
cryptocurrency volatility. We consider daily volatility (VOL_1), weekly
volatility (VOL_7), and monthly volatility (VOL_30) based on both their
internal and external determinants separately. During the forecasting
process, we deploy two types of forecasting models. The first is a
cryptocurrency-specific model that uses determinants from a single
cryptocurrency; these results are discussed in Section 7.1. The second is
the universal model that employs determinants from four chosen cryp-
tocurrencies; these results are discussed in Section 7.2. Furthermore,
after forecasts, we use SHAP to interpret our models and highlight
the significant determinants influencing cryptocurrency volatility. Fi-
nally, Section 7.3 discusses how we can hedge cryptocurrency volatility
utilizing our model forecasts.

7.1. Cryptocurrency-specific model

This section compares the prediction accuracy of cryptocurrency
volatility using internal and external determinants separately for the
four chosen cryptocurrencies. The results of internal determinants are
discussed in Section 7.1.1. The results of external determinants are
10

discussed in Section 7.1.2.
7.1.1. Internal determinants
In Table 7, we evaluate the performance of different forecasting

models using internal determinants. This evaluation is based on metrics
such as RMSE, MAPE, NMSE, and DA. The following findings can be
made.

Firstly, for daily volatility forecasts (Panel A), when comparing the
predictive power of different models, we find that ML techniques such
as LSTM and RF models outperform the traditional volatility model,
GARCH. Specifically, in Litecoin forecasts, the superiority of ML models
is demonstrated. For example, GARCH model yields the lowest MAPE
of 31.10%, NMSE of 16.58%, and DA of 63.66%. However, the RF
model demonstrates better performance with MAPE of 26.31%, NMSE
of 12.86%, and a DA of 41.12%. It is worth noting that DA is not
an applicable evaluation metric for GARCH, given that we employ an
expanding window strategy for forecasting. In particular, LSTM model,
specifically the ABC-LSTM, exhibits significant improvement when its
hyper-parameters are fine-tuned using optimization algorithms. This
optimization process leads the ABC-LSTM to outperform all other mod-
els in out-of-sample Litecoin prediction, achieving the lowest MAPE
of 23.45%, NMSE of 8.91%, and a DA of 44.86%. This result can be
attributed to the flexibility of ML models and their superior ability
to capture complex non-linear relationships between predictors and
determinants.

Furthermore, to test the stability of the ML models, we perform
seven-day-ahead and 15 day-ahead forecasts (presented in Table D.15),
with the seven-day-ahead forecasts demonstrating superior perfor-
mance, particularly in directional prediction. The best seven-day-ahead
forecast is achieved for Litecoin, with a 30.54% MAPE, 15.73% NMSE,
and 52.81% DA. Overall, one-day-ahead forecasts perform best, except
in directional prediction, where the seven-day-ahead forecasts yield the
highest average DA.

Second, for weekly volatility forecasts (Panel B), the RF model
performs best for Litecoin, with the lowest MAPE of 27.86% and
NMSE of 11.13%. ABC-LSTM also demonstrates superior performance
for Litecoin, achieving the lowest MAPE of 22.94% and NMSE of 8.2%.
In terms of monthly volatility forecasts (Panel C), using the optimized
LSTM model significantly enhances the accuracy of the forecasts com-
pared to the default LSTM and RF models. The most accurate forecast is
obtained for Ethereum, with the lowest MAPE of 29.84% and NMSE of
14.38%. The most accurate directional forecast is achieved for Bitcoin,
with the highest DA of 57.05%. Regarding the directional forecast accu-
racy, RF model outperforms other models for both weekly and monthly
volatility, achieving the highest DA of 61.12% in Ethereum’s weekly
forecasts. The ABC-LSTM model demonstrates consistent performance
in directional forecasting accuracy, achieving the highest DA of 57.05%
in Bitcoin’s monthly forecasts.

Finally, the results show that the optimized LSTM models have
the most accurate forecasts using internal determinants for weekly
cryptocurrency volatility. Daily volatility tends to be excessively noisy
due to high-frequency changes in the cryptocurrency market, making
it challenging to discern meaningful patterns and accurately capture
information related to extreme values. Conversely, monthly volatility
is too smooth to capture valuable time points, potentially making the
model less sensitive to shorter-term market shifts that can influence
the forecast. Therefore, we find that weekly volatility, balancing the
granularity of the daily series and the smoothness of the monthly
series, offers the optimal temporal scale for predicting cryptocurrency
volatility using the models and determinants employed in this study.

Table 6 presents the optimized hyper-parameters of ABC-LSTM for
daily volatility. Regarding the number of LSTM neurons, we find that
neurons of 6, 32, or 64 outperform models with a higher number of
neurons. It indicates that increasing the number of neurons could not
improve the model prediction accuracy and increase the model com-
plexity and may lead to the risk of over-fitting problem (Goodfellow

et al., 2016).
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Fig. 4. SHAP summary of VOL_1 for Bitcoin using LSTM with internal determinants.
Table 6
Optimized hyper-parameters of ABC-LSTM for daily volatility.

Hyper-parameters Optimized value

Bitcoin Ethereum Litecoin Ripple

Number of LSTM neurons 16 64 32 16
Dropout rate 0.1 0.2 0.3 0.1
Learning rate 0.001 0.001 0.001 0.001
Batch size 64 32 32 32
Epochs 50 50 50 100
Optimizer RMSprop Adam Adam Adam

Fig. 4 presents the SHAP summary plot of VOL_1 for Bitcoin using
ABC-LSTM considering the internal determinants. The relative impor-
tance of each feature is depicted on the left, obtained by averaging
the absolute values of the SHAP values in descending order. On the
right, each point signifies a row in the dataset, with the gradient
colour representing the original value of a feature (high values in red,
low values in blue). We find that the leading internal determinants
of daily Bitcoin volatility are the previous day’s trading count, high
price, and volatility. Most internal determinants have a substantial
number of red points (indicating high feature values) on the positive
SHAP value side. This finding suggests that when internal determinants
have high values, they increase the daily Bitcoin volatility for most
instances. Furthermore, Figs. E.14 and E.15 present the SHAP summary
plot of VOL_7 and VOL_30 for Bitcoin, respectively. We find that the
previous day’s trading count remains the most influential determinant
for both weekly and monthly volatility. This finding is in line with prior
findings that indicate a significant time-series momentum phenomenon
in the cryptocurrency market (Liu & Tsyvinski, 2021; Liu et al., 2022).
However, specific internal determinants of weekly volatility, such as
the previous day’s low and closing prices, have more negative SHAP
values. This implies that when these determinants have high values,
they tend to decrease weekly volatility.

7.1.2. External determinants
We use external determinants, including technology, financial, and

policy uncertainty factors, to forecast cryptocurrency volatility. Our
earlier work has shown that LSTM exhibits superior predictive power
over GARCH and RF models when using internal determinants, so
we apply LSTM for these volatility forecasts. We also aim to deter-
mine whether ABC remains a more sophisticated method than GA
in optimizing LSTM’s hyperparameters when incorporating external
determinants. For each forecast, we consider 27 external determinants.
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Table 8 presents the out-of-sample performance of forecasts using
external determinants, with Panel A, B, and C presenting the daily,
weekly, and monthly volatility forecasts, respectively.

Upon comparison, we find that internal determinants exhibit higher
predictive power than external ones. When using the external deter-
minants, the best prediction is using ABC-LSTM to predict the Bitcoin
daily volatility, achieving 29.58% MAPE, 14.13% NMSE, and 50.43%
DA compared with the prediction of 26.35% MAPE, 11.54% NMSE, and
46.73% DA using the internal determinants. However, incorporating
external determinants allows us to generate more insights from other
financial markets or blockchain platforms, potentially improving the
accuracy of directional volatility prediction. Even though the exter-
nal determinants may yield slightly less accurate predictions overall,
they may prove invaluable in predicting the direction of the volatility
changes, which can be crucial in investment decision-making and risk
management.

Fig. 5 presents a SHAP summary plot of VOL_1 for Bitcoin using
ABC-LSTM when considering the external determinants. We find that
some financial factors, such as the adjusted close price of NASDAQ
and S&P 500, and USD-EURO, are the most influential determinants.
Moreover, trading volumes in the financial market emerge as important
determinants, implying a direct connection between the financial and
cryptocurrency markets. Interestingly, most of these financial factors
positively impact daily Bitcoin volatility, except for the adjusted close
price of NASDAQ. These observations suggest that specific financial
determinants significantly impact daily Bitcoin volatility. Our finding
aligns with previous research that suggests the trading volume of the
financial market influences volatility and therefore affects investors’
decision-making processes (Alexander & Dakos, 2020). Furthermore,
the Google search volume for ‘‘Bitcoin’’ and certain blockchain factors,
such as mining difficulty and the number of payments per block,
also positively influence Bitcoin’s daily volatility. This highlights the
intricate nature of the cryptocurrency market and affirms previous
findings suggesting that technological factors hold predictive power
over the cryptocurrency market (Chen et al., 2021).

7.2. Universal model

This section uses the universal models trained with determinants
from four chosen cryptocurrencies. Table 9 presents the out-of-sample
performance of forecasts using universal RF, GA-LSTM, and ABC-LSTM.
The results suggest the following conclusions.
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Fig. 5. SHAP summary of VOL_1 for Bitcoin using LSTM with external determinants.
Table 7
Out-of-sample performance of one-day-ahead volatility forecasts using internal features.

Panel A: Daily volatility forecasts Panel B: Weekly volatility forecasts Panel C: Monthly volatility forecasts

GARCH RF LSTM GA-LSTM ABC-LSTM RF LSTM GA-LSTM ABC-LSTM RF LSTM GA-LSTM ABC-LSTM

Bitcoin volatility forecasts

RMSE 0.014 0.012 0.014 0.013 0.013 0.034 0.031 0.031 0.034 0.109 0.117 0.080 0.065
MAPE 38.02 28.31 35.81 34.83 26.35 29.21 26.71 26.60 27.80 48.40 59.08 39.86 32.76
NMSE 26.02 13.62 21.84 20.76 11.54 13.58 11.18 11.18 12.94 40.47 44.46 21.54 15.12
DA 64.51 40.19 42.37 38.44 46.73 43.21 40.43 41.67 43.83 56.43 41.69 39.81 57.05

Ethereum volatility forecasts

RMSE 0.017 0.015 0.017 0.016 0.016 0.045 0.055 0.051 0.046 0.146 0.134 0.111 0.075
MAPE 38.61 27.01 34.13 29.01 30.15 31.84 41.91 36.65 29.66 61.65 55.76 46.43 29.84
NMSE 24.97 12.85 20.02 14.12 15.86 15.73 25.68 20.35 14.50 50.77 41.33 29.89 14.38
DA 63.94 40.50 42.99 45.48 44.24 61.42 42.90 44.14 43.52 58.31 44.20 45.45 46.71

Litecoin volatility forecasts

RMSE 0.022 0.023 0.024 0.022 0.023 0.052 0.053 0.051 0.052 0.092 0.083 0.081 0.079
MAPE 31.10 26.31 36.84 27.33 23.45 27.86 30.64 27.44 22.94 27.17 27.09 26.36 25.17
NMSE 16.58 12.86 21.92 12.73 8.91 11.13 13.37 11.03 8.20 11.99 11.50 10.83 9.93
DA 63.66 41.12 40.81 45.17 44.86 46.30 42.90 43.52 42.59 57.68 41.69 42.32 41.69

Ripple volatility forecasts

RMSE 0.021 0.024 0.027 0.026 0.024 0.058 0.062 0.058 0.057 0.097 0.090 0.087 0.087
MAPE 35.28 31.61 45.07 36.93 29.29 32.65 35.93 26.69 27.92 31.20 30.31 29.37 29.13
NMSE 20.38 17.21 33.34 22.72 15.31 17.05 19.73 11.72 12.64 13.79 13.52 12.78 12.31
DA 67.04 39.56 43.61 42.37 43.61 59.26 42.59 45.68 44.14 57.99 40.75 42.63 41.69

[a] Metrics MAPE, NMSE, and DA are presented in the format of percentages.
First, LSTM outperforms RF regarding prediction power, effectively
extracting hidden and meaningful information from financial time-
series data. Moreover, using an effective hyper-parameter optimization
method can further enhance forecasts. In this case, ABC proves superior
in identifying the optimal hyper-parameters of LSTM. It demonstrates
the high predictive power of ML techniques, particularly deep learning
methods, in the cryptocurrency market.

Additionally, the universal model achieves better prediction accu-
racy than the cryptocurrency-specific model. This finding is in line with
previous research in the stock market, such as the study by Sirignano
and Cont (2019), where a universal LSTM model outperforms stock-
specific models in forecasting the direction of stock price movement.
This phenomenon suggests the presence of volatility clustering in the
cryptocurrency market, indicating that certain dependencies can be
exploited to construct an effective investment portfolio, thereby off-
setting risks and maximizing returns. The best prediction is for the
Bitcoin monthly volatility, achieving 14.74% MAPE, 3.22% NMSE,
and 47.98% DA. This suggests a significant improvement compared
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to the forecasts using only internal determinants (with 32.76% MAPE
and 15.12% NMSE) or external determinants (with 35.63% MAPE and
19.80% NMSE). Therefore, including all internal and external determi-
nants in monthly forecasts offers a more comprehensive and insightful
understanding of forecasts.

Furthermore, Fig. 6 provides a SHAP summary plot of VOL_1 for
Bitcoin using the universal ABC-LSTM model. Certain financial factors,
such as the adjusted close price of NASDAQ and S&P 500, are observed
to have a negative impact on daily Bitcoin volatility. Conversely, the
previous day’s high and open price, as well as the trade count of Bitcoin,
positively influence daily Bitcoin volatility. Interestingly, we find that
factors, such as the previous day’s Ethereum volatility and trading
information, also impact daily Bitcoin volatility. These observations
suggest a potential correlation between Bitcoin and Ethereum, rein-
forcing the recognized clustering pattern in the cryptocurrency market
where different cryptocurrencies group together due to their temporal
similarities (Sigaki, Perc, & Ribeiro, 2019). Moreover, technology fac-
tors, including Google search volumes and certain blockchain factors,
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Fig. 6. SHAP summary of VOL_1 for Bitcoin using universal LSTM.
Table 8
Out-of-sample performance of one-day-ahead volatility forecasts using external features.

Panel A: Daily volatility forecasts Panel B: Weekly volatility forecasts Panel C: Monthly volatility forecasts

LSTM GA-LSTM ABC-LSTM LSTM GA-LSTM ABC-LSTM LSTM GA-LSTM ABC-LSTM

Bitcoin volatility forecasts

RMSE 0.021 0.018 0.015 0.052 0.042 0.042 0.141 0.099 0.077
MAPE 58.71 46.45 29.58 48.21 35.09 29.39 70.49 46.38 35.63
NMSE 49.33 34.87 14.13 36.70 17.25 15.47 59.95 27.93 19.80
DA 47.86 53.42 50.43 51.50 54.51 49.79 49.34 51.09 54.15

Ethereum volatility forecasts

RMSE 0.023 0.022 0.020 0.090 0.080 0.083 0.167 0.157 0.153
MAPE 45.05 42.73 41.56 77.31 67.32 50.94 67.36 64.11 58.98
NMSE 32.45 28.73 26.87 87.68 65.89 43.92 60.97 55.06 47.86
DA 54.70 52.56 54.70 54.51 52.79 50.21 49.78 48.91 50.22

Litecoin volatility forecasts

RMSE 0.030 0.027 0.026 0.087 0.083 0.079 0.159 0.149 0.144
MAPE 53.35 40.99 37.08 62.37 58.11 55.06 54.75 51.13 49.42
NMSE 45.39 28.33 23.11 56.24 52.12 47.76 44.77 40.32 38.13
DA 50.00 52.56 55.56 51.93 51.50 52.79 48.91 51.09 51.09

Ripple volatility forecasts

RMSE 0.035 0.028 0.033 0.096 0.092 0.078 0.203 0.195 0.176
MAPE 52.65 48.04 48.65 63.89 56.83 43.09 69.90 67.09 54.38
NMSE 53.20 43.56 45.11 62.75 58.23 37.26 66.31 61.78 46.23
DA 50.85 47.01 50.43 52.36 49.36 53.65 48.03 47.60 45.85

[a] Metrics MAPE, NMSE, and DA are presented in the format of percentages.
Fig. 7. Forecasted and realized Bitcoin daily volatility.
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also emerge as influential determinants. Therefore, to improve the
accuracy and reliability of our forecasts, it is crucial to consider the in-
tricacies of the predicted cryptocurrency and account for the influences
from the broader cryptocurrency market and external determinants.

7.3. Hedging cryptocurrency volatility

The importance of forecasting volatility is well-recognized, particu-
larly in providing investors with the tools they need to hedge against
volatility in the cryptocurrency markets. In the following analysis, we
use our forecasted daily Bitcoin volatility as a case study, showing how
it can be used to construct a dynamic portfolio that effectively hedges
against cryptocurrency volatility.

Fig. 7 shows the out-of-sample forecasted daily volatility (as es-
timated in the universal model with LSTM) and the realized daily
volatility of Bitcoin from August 2021 to July 2022. The two-time
series demonstrate a correlation of 0.42, significantly different from
zero. This strong correlation suggests a market-timing strategy for
hedging volatility. In particular, when the forecasted daily volatility is
greater than the historical average volatility, it implies that the realized
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Table 9
Out-of-sample performance of one-day-ahead volatility forecasts in universal model.

RF GA-LSTM ABC-LSTM

Panel A: Daily bitcoin volatility

RMSE 0.011 0.013 0.012
MAPE 22.99 22.53 22.55
NMSE 8.42 9.30 8.54
DA 42.36 50.22 52.84

Panel B: Weekly Bitcoin volatility

RMSE 0.030 0.033 0.032
MAPE 21.49 19.32 17.14
NMSE 8.43 6.19 5.25
DA 50.00 44.74 50.44

Panel C: Monthly Bitcoin volatility

RMSE 0.043 0.046 0.036
MAPE 18.40 17.33 14.74
NMSE 6.33 4.74 3.22
DA 49.78 48.88 47.98

[a] Metrics MAPE, NMSE, and DA are presented in the format of percentages.

volatility could also be high the following day. As such, investors can
hedge against this volatility risk by not holding any cryptocurrency
assets during this period.

The green (red) dash line in Fig. 7 represents the average realized
daily volatility when our forecasted volatility is higher (lower) than the
historical average. The average daily volatility in the training window
(pre-2021 sample period) is used as the historical average volatility,
thus avoiding any look-ahead bias when constructing this strategy.
Without taking any action to hedge volatility, an investor would face
an average volatility of 0.04 in a high volatility period. However, if the
investor chooses not to hold any Bitcoin when the forecasted volatility
exceeds the historical average, they would face an average volatility of
0.032. This hedging strategy can thus provide investors with around a
25% reduction in volatility, which is economically significant.

While reducing the volatility risk based on the volatility forecast is
essential for investors, it is also important to consider (risk-adjusted)
returns. This phenomenon is especially true when investors have a
mean–variance preference and would like to pursue higher expected
returns while lowering the volatility risk. In what follows, we show
that the hedging strategy discussed above reduces the volatility risk
and improves the returns compared to a passive strategy.

Fig. 8 plots the cumulative daily returns of Bitcoin from August
2021 to July 2022. The Bitcoin market experienced more downward
price movements than upward movements during this period. The
cumulative returns reach −29.1%, indicating that a one-dollar invest-
ment is associated with a loss of $0.291. In this case, it is plausible
that staying out of the market in periods of higher volatility can
result in higher returns (less losses) and lower volatility, which are
mean–variance investors wants ultimately when compared to a passive
strategy.

To decide which period investors stay out of the market, we follow
the above hedging strategy in which investors stay out of the market
when the forecasted daily volatility is greater than the historical aver-
age volatility in the training period (pre-August 2021).10 Since investors
also care about the downside (tail) risk in their managed portfolio,
as any excessive investments during the down (bear) market state is
at risk of substantial losses, it is important to hedge those significant
price declines to improve the portfolio performance in terms both of
the returns and volatility risks. Therefore, we focus on the period from
November 2021, when Bitcoin started to experience the most dramatic
price declines.

10 Note that the strategy here is out-of-sample and in real-time since whether
to invest in the Bitcoin market at day 𝑡 + 1 is determined by the volatility
forecasted at day 𝑡.
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Fig. 8. Cumulative daily returns of Bitcoin.

Fig. 9. Cumulative daily returns of hedging and passive strategy.

Fig. 9 plots the cumulative daily returns of the hedging (active)
and passive strategy in the Bitcoin market. Compared to the passive
strategy, the active strategy hedges many downward movements, as
indicated by the straight line (zero returns as no investment is made)
in the yellow curve in Fig. 9. As a result, the cumulative daily return of
the active strategy (−28.9%) is 16.5% higher than that of the passive
strategy (−45.4%), though both are negative since the market was
down (bear) state.

Overall, the above findings suggest that our hedging strategy re-
duces the volatility risk and improves the returns compared to a passive
strategy. These findings further reinforce the economic significance of
forecasting cryptocurrency volatility.

8. Conclusions

Despite their complex and risky nature, cryptocurrencies have be-
come popular alternative investment tools. In this study, we provide
a comprehensive exploration of cryptocurrency volatility forecasts. In
particular, we compare the forecasting performance of ML techniques
with the traditional GARCH volatility model and explore the determi-
nants of volatility forecasts. Our empirical results demonstrate that ML
techniques outperform the traditional method in forecasting cryptocur-
rency volatility, with ABC-LSTM exhibiting the best prediction perfor-
mance. Moreover, our universal model outperforms cryptocurrency-
specific models, suggesting the presence of volatility clustering in the
cryptocurrency market. Furthermore, our SHAP analysis reveals that
internal determinants play a significant role in volatility forecasts.
Technology factors, including Google search volumes and specific
blockchain factors, alongside financial factors, such as the adjusted
close prices of NASDAQ and S&P 500, are also influential determinants.
This finding suggests that considering a broader range of determinants
can help capture the complex dynamics of the cryptocurrency market.
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Our research fills gaps in cryptocurrency volatility time-series anal-
ysis and provides practical implications. For investors, our state-of-
art forecasts of cryptocurrency volatility and deeper understanding
of determinants can support more effective investment portfolios of
cryptocurrencies and other financial assets, thus mitigating investment
risks. For financial institutions and policymakers, our forecasts can sup-
port the stable development of the cryptocurrency market, preventing
market bubbles and reducing systemic risk. The expanded application
and framework of ML techniques can also be applied to other time-
series forecasting problems in other financial markets. Future research
could enhance the performances of ML algorithms by considering a
wider range of potential determinants and refining ML interpretation.

The results of our paper have implications for future studies in
several ways. First, the inclusion of more external determinants from
sentiment analysis of Twitter and other social media platforms may
enhance forecast accuracy. Second, it would be interesting to explore
how primary events, such as structural breaks and flash crashes, may
affect forecasts. Finally, novel forecasting frameworks that consider
correlations among cryptocurrencies and relations between cryptocur-
rency and other financial markets can be explored. For instance, the
graph-neutral network model could provide valuable insights into these
relations and improve the forecasts.
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Appendix A. Generalized autoregressive conditional
heteroskedasticity (GARCH)

GARCH is a statistical model that is widely employed for fore-
casting the volatility of financial markets (Agnolucci, 2009; Gökbulut
& Pekkaya, 2014; Wang, Ma, Liu, & Yang, 2020). This model was
first proposed by Bollerslev (1986) and has since gained widespread
acceptance for its versatility and efficacy. A GARCH(𝑝, 𝑞) model, where
𝑝 is the order of the GARCH terms (lagged variances) and 𝑞 is the
order of the ARCH terms (squared residuals), can be defined as shown
in Eq. (A.1):

𝜎2𝑡 = 𝜔 +
𝑞
∑

𝑖=1
𝛼𝑖𝜖

2
𝑡−𝑖 +

𝑝
∑

𝑗=1
𝛽𝑗𝜎

2
𝑡−𝑗 , (A.1)

where 𝜎2𝑡 is the conditional variance of the daily cryptocurrency return
at time 𝑡, 𝜔 is a constant term representing the long-run average
variance, 𝛼𝑖 are coefficients of the ARCH terms (𝜖2𝑡−𝑖, the lagged squared
residuals from the mean equation), and 𝛽𝑗 are coefficients of the
GARCH terms (𝜎2𝑡−𝑗 , the lagged conditional variances). The terms 𝜖2𝑡−𝑖
and 𝜎2𝑡−𝑗 allow the model to adapt to changes in variance over time,
thereby capturing the volatility clustering commonly observed in fi-
nancial returns. This model’s flexibility and effectiveness have made
it a tool for financial time series analysis, especially when dealing with
market volatility. From ACF and PACF plots of daily return, shown in
Fig. A.11, we choose GARCH(1, 1). Additionally, Table A.10 presents
the descriptive statistics for daily cryptocurrency return. Moreover, to
compare the out-of-sample performance of forecasts with other ML
models, we use an expanding window strategy, shown in Fig. A.10. This
process continuously adds new data points to the training set to have
one-time ahead forecasts.

Appendix B. Summary of acronyms

See Table B.11

Appendix C. Summary statistics of determinants

See Figs. C.12, C.13 and Tables C.12–C.14
Fig. A.10. Expanding window forecasts.
Table A.10
Descriptive statistics and ADF test for cryptocurrency daily return.

Count Mean Std Min 25% 50% 75% Max Skewness Kurtosis ADF Statistic 𝑃 -value

BTC_R_1 1673.0 0.000 0.041 −0.491 −0.017 0.001 0.019 0.178 −1.130 14.084 −28.583 0.0
ETH_R_1 1673.0 0.000 0.053 −0.582 −0.024 0.002 0.028 0.235 −1.018 10.715 −12.421 0.0
LTC_R_1 1673.0 −0.001 0.055 −0.478 −0.029 −0.001 0.027 0.288 −0.600 7.991 −12.042 0.0
XRP_R_1 1673.0 −0.001 0.061 −0.538 −0.026 −0.000 0.023 0.450 0.027 11.569 −42.008 0.0
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Fig. A.11. ACF and PACF of daily return.

Fig. C.12. ACF and PACF of daily volatility.
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Fig. C.13. The normalization data plot for external determinants.

Fig. E.14. SHAP summary of VOL_7 for Bitcoin using LSTM with internal determinants.
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Table B.11
Summary of acronyms.

Acronym Full form

ML Machine learning
DL Deep learning
BTC Bitcoin
ETH Ethereum
LTC Litecoin
XRP Ripple
GARCH Generalized autoregressive conditional heteroskedasticity
RF Random forest
LSTM Long short-term memory
ANN Artificial neural network
NN Neural network
ARIMA Autoregressive integrated moving average
SVR Support vector regression
SVM Support vector machine
ANFIS Adaptive network fuzzy inference system
QDA Quadratic discriminant analysis
LDA Linear discriminant analysis
CNN Convolution neural network
GRU Gated recurrent unit
KOSPI Korea stock price index
ABC Artificial bee colony
GA Genetic algorithm
SHAP Shapley additive explanations
RMSE Root mean squared error
MAE Mean absolute error
MAPE Mean absolute percentage error
NMSE Normalized mean squared error
AUC Area under the ROC curve
MSPE Mean squared prediction error
DA Directional accuracy
ADF Augmented Dickey–Fuller test
ACF Autocorrelation function
PACF Partial autocorrelation function
DJI Dow Jones industrial average
Table C.12
Correlation analysis.

Panel A: Daily volatility

lag_1 lag_2 lag_3 lag_4 lag_5 lag_6 lag_7 ma_3 ma_5 ma_7 ma_21 ma_28 ma_35 Open Close High Low Volume Count
BTC_VOL_1 0.632 0.481 0.458 0.450 0.392 0.364 0.343 0.615 0.608 0.587 0.487 0.453 0.437 0.125 0.120 0.129 0.112 0.391 0.244
ETH_VOL_1 0.633 0.443 0.423 0.431 0.345 0.300 0.283 0.590 0.581 0.549 0.416 0.376 0.359 0.060 0.055 0.065 0.044 0.425 0.229
LTC_VOL_1 0.574 0.435 0.396 0.399 0.323 0.294 0.278 0.563 0.554 0.531 0.451 0.421 0.417 0.244 0.236 0.252 0.223 0.385 0.339
XRP_VOL_1 0.644 0.496 0.449 0.419 0.375 0.335 0.307 0.619 0.599 0.572 0.485 0.476 0.479 0.210 0.211 0.232 0.191 0.389 0.400

Panel B: Weekly volatility

lag_7 lag_8 lag_9 lag_10 lag_11 lag_12 lag_13 lag_14 ma_3 ma_5 ma_7 Open Close High Low Volume Count
BTC_VOL_7 0.574 0.530 0.497 0.470 0.448 0.433 0.421 0.412 0.542 0.522 0.511 0.113 0.109 0.117 0.101 0.369 0.228
ETH_VOL_7 0.507 0.451 0.409 0.375 0.349 0.331 0.317 0.309 0.464 0.435 0.419 0.070 0.065 0.077 0.055 0.392 0.209
LTC_VOL_7 0.500 0.455 0.422 0.398 0.381 0.370 0.364 0.361 0.468 0.450 0.443 0.379 0.368 0.386 0.354 0.415 0.436
XRP_VOL_7 0.572 0.529 0.498 0.478 0.464 0.453 0.446 0.441 0.541 0.526 0.520 0.366 0.361 0.383 0.329 0.281 0.326

Panel C: Monthly volatility

lag_30 lag_31 lag_32 lag_33 lag_34 lag_35 lag_36 lag_37 ma_3 ma_5 ma_7 Open Close High Low Volume Count
BTC_VOL_30 0.461 0.451 0.443 0.437 0.432 0.427 0.423 0.419 0.453 0.447 0.443 0.132 0.132 0.135 0.128 0.174 0.150
ETH_VOL_30 0.392 0.379 0.370 0.361 0.354 0.347 0.339 0.332 0.381 0.373 0.366 0.065 0.066 0.070 0.059 0.202 0.127
LTC_VOL_30 0.480 0.473 0.467 0.462 0.457 0.452 0.447 0.441 0.474 0.470 0.467 0.421 0.422 0.424 0.415 0.321 0.369
XRP_VOL_30 0.631 0.623 0.616 0.609 0.603 0.596 0.589 0.582 0.624 0.618 0.613 0.331 0.336 0.345 0.323 0.294 0.336

Notes: Open, Close, High, Low, Volume, Count represents lag 1, lag 7 and lag 30 of Open Price, Close Price, High Price, Low Price, Trading Volume, and Trade Count for daily,
monthly, and monthly volatility separately.
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Table C.13
Descriptive statistics for internal determinants.

Count Mean Std Min 25% 50% 75% Max

Price_Open_BTC 1673.00 20 407.71 17 737.32 3180.84 7384.57 10 262.54 36 004.80 67 554.13
Price_Close_BTC 1673.00 20 413.24 17 736.72 3183.00 7384.89 10 262.54 36 018.64 67 554.84
Price_High_BTC 1673.00 20 999.98 18 232.14 3241.00 7588.00 10 490.00 37 593.00 69 060.00
Price_Low_BTC 1673.00 19 707.54 17 129.82 3120.00 7215.00 9899.95 34 381.10 66 250.00
Volume_Traded_BTC 1673.00 33 268.97 24 225.72 4264.68 18 222.42 27 361.88 40 180.87 258 373.35
Trade_Count_BTC 1673.00 287 168.93 268 901.24 37 298.00 96 640.00 167 643.00 431 343.00 2482167.00

Price_Open_ETH 1673.00 1121.13 1250.24 82.92 199.09 430.45 1912.04 4811.89
Price_Close_ETH 1673.00 1121.71 1250.28 82.82 199.13 430.45 1911.98 4811.90
Price_High_ETH 1673.00 1162.40 1291.62 84.98 205.03 443.00 1977.41 4870.51
Price_Low_ETH 1673.00 1071.55 1200.61 80.56 192.42 412.11 1801.94 4697.90
Volume_Traded_ETH 1673.00 339 847.87 273 041.63 28 838.46 168 933.53 271 247.57 412 298.43 2587706.85
Trade_Count_ETH 1673.00 230 999.01 270 115.06 11 268.00 45 291.00 92 041.00 370 713.00 2003052.00

Price_Open_LTC 1673.00 102.92 62.73 22.84 53.31 80.59 142.76 388.13
Price_Close_LTC 1673.00 102.82 62.67 22.88 53.35 80.49 142.72 388.30
Price_High_LTC 1673.00 107.43 66.48 23.49 55.18 83.94 149.48 414.07
Price_Low_LTC 1673.00 97.72 58.61 20.00 51.30 76.01 135.65 345.23
Volume_Traded_LTC 1673.00 422 320.34 364 925.25 33 829.75 196 860.39 312 383.66 511 375.76 3373068.06
Trade_Count_LTC 1673.00 57 800.43 58 666.75 4973.00 18 323.00 40 747.00 76 348.00 514 923.00

Price_Open_XRP 1673.00 0.53 0.36 0.14 0.28 0.40 0.71 2.76
Price_Close_XRP 1673.00 0.53 0.36 0.14 0.28 0.40 0.71 2.78
Price_High_XRP 1673.00 0.56 0.39 0.15 0.29 0.42 0.75 3.35
Price_Low_XRP 1673.00 0.50 0.33 0.11 0.27 0.38 0.67 2.53
Volume_Traded_XRP 1673.00 105728419.80 173551694.57 2397679.61 32212884.93 62083335.71 115498626.50 2965898687.00
Trade_Count_XRP 1673.00 38 025.58 58 539.42 2747.00 14 648.00 23 256.00 39469.00 982 458.00
Table C.14
Descriptive statistics for external determinants.

Mean Std Min Max Count

Panel A: Blockchain data

Average block size 1.15 0.18 0.45 1.53 1254
Average transactions 1944.21 344.22 879.90 2734.44 1254
Average payments per block 3838.01 943.41 1520.09 7236.20 1668
Average confirmation time 99.49 327.09 5.67 5203.91 1398
Hash rate 1.27E+08 5.20E+07 1.51E+07 2.66E+08 1254
Difficulty 1.76E+13 7.11E+12 1.93E+12 3.13E+13 1254

Panel B: Google Trend data

Blockchain trend 62.07 17.33 22 100 1673
Cryptocurrency trend 36.99 19.26 5 100 1673
Bitcoin trend 34.32 16.02 7 100 1673

Panel C: Financial data

Adj_Oil 62.90 19.86 −37.63 123.70 1154
Adj_Gold 1595.78 254.33 1176.20 2051.50 1152
Adj_Silver 19.83 4.50 11.73 29.40 1151
Adj_DJI 2.88E+04 4066.57 1.86E+04 3.68E+04 1152
Adj_SP_500 3406.27 681.04 2237.40 4796.56 1152
Adj_NASDAQ 1.04E+04 2900.56 6192.919922 1.61E+04 1152
Adj_Russell_2000 1751.63 316.45 991.16 2442.74 1152
V_Oil 5.06E+05 2.32E+05 6.02E+04 2.29E+06 1154
V_Gold 5761.01 3.22E+04 0.00 3.86E+05 1152
V_Silver 1871.13 1.08E+04 0.00 1.31E+05 1151
V_DJI 3.53E+08 1.13E+08 8.62E+07 9.16E+08 1152
V_SP_500 3.97E+09 1.09E+09 1.30E+09 9.88E+09 1152
V_NASDAQ 3.57E+09 1.55E+09 1.49E+08 1.11E+10 1152
V_Russell_2000 3.96E+09 1.11E+09 0.00E+00 9.88E+09 1152
Yuan-USD 6.69 0.26 6.27 7.18 1193
USD-Euro 1.15 0.05 1.00 1.25 1194

Panel D: Policy Uncertainty Data

US daily news data 159 119.41 4.05 86.10 1673

Notes: Adj represents the adjusted close price, and V represents the trading volume of financial predictors separately.
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Fig. E.15. SHAP summary of VOL_30 for Bitcoin using LSTM with internal determinants.
Table D.15
Out-of-sample performance of seven-day-ahead and 15 day-ahead daily volatility
forecasts using internal determinants.

Panel A: Seven-day-ahead Panel B: 15 day-ahead

Bitcoin volatility forecasts

RF ABC-LSTM RF ABC-LSTM

RMSE 0.015 0.016 0.017 0.016
MAPE 37.72 33.65 53.56 45.24
MSPE 24.68 19.70 51.68 34.97
DA 54.69 50.94 51.57 48.74

Ethereum volatility forecasts

RMSE 0.022 0.021 0.036 0.020
MAPE 50.93 43.12 97.19 47.08
MSPE 42.50 32.22 151.35 38.06
DA 49.06 49.38 49.37 46.23

Litecoin volatility forecasts

RMSE 0.027 0.023 0.024 0.024
MAPE 38.43 30.54 35.74 31.40
MSPE 28.90 15.73 22.04 17.11
DA 54.37 52.81 42.14 47.80

Ripple volatility forecasts

RMSE 0.025 0.025 0.027 0.025
MAPE 39.60 37.22 52.73 39.02
MSPE 26.37 24.08 48.44 26.56
DA 52.81 50.94 51.57 48.43

Appendix D. Results

See Table D.15

Appendix E. SHAP

See Figs. E.14 and E.15
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