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1. Introduction

· What is meant by digital signal processing

· Digital systems.

· Analog systems.
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2. Linear system overview.

3. Analog signal processing.

4. Discrete time signals and systems.

5. Digital systems.

6. Algorithms :  DFT, FFT

7. Errors.

8. Digital Filters realization and design

9. Applications :  in comm.

                           in electronics.

                           in computers.

[image: image2.jpg]-10852001d [euSts [enS1p € Jo uoisioA popuedxy  §°0 a3y

(1)x

1031
Soeue
JusreAmby

4

(nx

©"y

(1°x

a/v

(u)x

]
1e38Iq

()«

v/a

[Ehhe

)'H

[

A
(nx

JoLN
7 w
(1)

1

1000 1100 0010 -+

0000 1000 0100 -+

(u)x

@)

(X

)4

(@0

‘bg ut udAI3 suonemd[Ed AU} wuojsed 03 pownweioid st ey 1oinduwiod [endip

v Aq pooeidar st asemprey rendip ssodind-ferdads oy uonpyuauwrdduwt SIgy U]
*170 “Sig ut umoys st Jossanoxd Sojeue auwies Ay Funeiuit Jo Kem Iogiouy

*(7)x ndut Sofeue pojdures oy jo

Jey) 108 AU} 0) A0 J0LI uonewrxoidde ue osfe St

1oy, “suonejuasaidar Ay Juisn pauuiogiad 2q 1snU SUOKIPPE pue suoneord

-nnw Surpuodsaiiod ay ‘puodds ‘pue sjuswaninbal Aowaw AUy Jo 28NBIq

poznuenb aq st ip pue ‘g ‘0 SIULOYFIOI o “wsa sadfy diseq omy Jo

are ugisop ay Jo uonrjuawd[dur [EnIE 10} Kressaoou suonewrxoidde aq1,
'9°0 81 UL umoys
ensn([l wegerp 300[q

uonejuasaidar AUy € st (u)x

st 93e101s pue ‘SUONIPPE ‘suoneardnnu paanbai 3y 8
v -!q pue ‘0q ‘'p $)uA10YFI00 U} J0 231038 10} Liowatu pue $(u)4 ndino g} Jo
son[ea 1sed pue Juasaxd Jo 93e10)s Ay 10] £1owaur $(u)x ndut Ay} JO SaN[EA jsed
pue juasad Jo 23eI03s Ay 10} Alowaul (SUOLIPPE PUE suopeardnnu Ay} uLoy
_10d 0y Annoxo [ENSIp sonnbai (°0) Aq PAQUIOSP 19)[Yy Ay Jo uonejuswadwy

_|N€+_

=(@H
79 +°%

£q uaa1d

(2)H vonouny WASAs € 03 spuodsaLiod SI ey umous 3q TITAN 311X} AU UL I

(0 (1 — w)'p — (1 —ux'q + (u)x°q = ()

:SMO[[O] S

uonenba 20uaIYIP ¥ £q pequosop 3q Ued 1Y AU} JEh umoys aq ued )1 ‘o[duexd
mo Jo syuowaxmbal 3y 104 “(2)y Aq pawosaidal 1Y [eSIp Sy QUILLINAP
0} pasn aq Ued X3} sip ul pajuasaid 2q 0} sonbiuyoa) SNOUEBA "V /a pue a/v
ayy 10 ojex d[duwes ayy yim Suofe 9A0QE PaqUISIP H20[q YoBS Jo uoneay1oads

oy sarmboi opdwexa Ino 10§ J0ss9001d oy3 Jo uSIsap Y 9jo1dwiod o,

ue jo weaderp Yooig 0 EXLLIE

-10110AU0D [ENBIP-03-BO[EUE

Tordues
12apl

(w)x = (*n)"x
103
piom 9po)

NOILONAOH.INI





2- Linear Systems

An electrical system is defined as any combination of electrical components. The system can be as simple as an RC circuit or as complex as a computer controlled space shuttle.

Linearity:

Linearity can be defined using the arithmetical concepts of addition, and multiplication as applied to functions.

· Addition
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Where [image: image5.png]Vi



(t) is the output due to the input [image: image7.png]x; (t)



.
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Ex.

 For  [image: image10.png]x, (t



) = 3t  + 2    &    [image: image12.png]x5 (t



) = 2-   t/2
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) =  t/4  -1      &         [image: image16.png]v, (t



)  =  t

The output due to     [image: image18.png]x, (t)
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) becomes

Y(t) =  [image: image22.png]yy (t



) + [image: image24.png]v, (t



)  =  t/4  -1  + t  =  5t/4  -1

· Multiplication

If a system is linear  & x(t) produces an output y(t), then c x(t) applied at the input will produce the output c y(t), where c can be real or complex.

Generally

[image: image25.png]i
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Where  y j(t)  is the output due to xj (t)  and cj may be real or complex.

Time invariance

If the components that form the system are constant in value ( i.e. they do not change with time), the system is said to be time invariant.

To define that mathematically, time shifted or time delayed function is introduced.
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    A signal and its time delayed form

For a time invariant system, there is no change in the shape of the output waveform if identical inputs are applied at different times.
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Causality

The relation between the cause which must come first, and the effect, which is a result of the cause, is termed causality.

A system is causal if it requires on input to produce an output: s(t) is required to produce  y(t).

i.e.        if       s(t)   is zero for all  t  (   0, then

                       y(t)  is zero for all   t  (  0.
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Terminologies

Delta function  δ (t)

To determine the I/O relationship of a system, we must know how it will respond to a special type of input called the impulse. The impulse is represented by the delta function, δ(t). It,s domain is all t, and its range contains only two values zero and infinity.
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Impulse response

If the input to a system is the impulse δ(t), the output is termed the impulse response and designated h(t).
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System output: convolution

Because of linearity, a constant time the δ function would produce the impulse response multiplied by the same constant.

f([image: image31.png]
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)

As the system is linear, if an input created from several inputs of the form   f([image: image39.png]


) δ(t-[image: image41.png]


), the output will be composed of the sum of the individual outputs.
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As  [image: image44.png]


  is continuous, then 
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y(t)  =  [image: image48.png]~ f(hE-1) dr




This is the convolution equation.

y(t) = f(t) * h(t)  =[image: image50.png]S fh(-1) dr




Y(ω)  =  F(ω) .  H(ω)

Fourier series: periodic signals

The standard exponential form of Fourier series is written as: 

[image: image52.png]f(t) =20-_cn



exp (j2πn[image: image54.png]fo



t)

Where f(t) is any periodic function with period T=2π/w0  = 1/f0  (-([image: image56.png]


 (), and cn are complex numbers.
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Fourier transform for Aperiodic signals
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Examples:

1- f(t) = [image: image62.png]


 (t)

[image: image63.png](t)





[image: image64.png]F(w) = [ :f(z) et




[image: image66.png]T 8() e dt



  =  [image: image68.png]e /9%



  =  1
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2- f(t)  =  1
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3- f(t) = sgnt
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   dt  
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4- f(t)  = U(t)
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U(t) = [image: image99.png]


   +   [image: image101.png]


    sgnt


F(w) = π  [image: image103.png]
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)  +  [image: image107.png]
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The  sampling theorem

A band limited signal which has no spectral components above a frequency fm HZ is uniquely determined by it values at uniform intervals less than 1/2fm seconds.

Given      f(t)    [image: image109.png]


       F([image: image111.png]


)
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F([image: image115.png]


) is band limited, that is    F([image: image117.png]


) = 0   for   |ω|   >    ωm
Multiplying the function f (t)  by a periodic impulse δ(t)
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Then:

The new function is a sequence

[image: image119.png]3 §(t—nt)
o z fat)





[image: image120.png]L®= € ). 8¢t-n9)





[image: image121.png]



The spectrum of   [image: image123.png]f.(1)



  is   [image: image125.png]F.(w)




To find   F [[image: image127.png]


 (t-nT)]

First:   F  [ [image: image129.png]el@ot



  ] = F  [ cos ([image: image131.png]wyt)



 + j sin ([image: image133.png]wyt )



 ] 

                                 =  π [[image: image135.png]
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) +  [image: image153.png]


 ([image: image155.png]


 - [image: image157.png]


)]

                                  =  2 π  [image: image159.png]
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   is a periodic function with period T. One can represent it with Fourier series as: 
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Between T/2  & -T/2       [image: image168.png]5:(t)



  is only [image: image170.png]
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Fs([image: image184.png]


) = [image: image186.png]o I FO). @, T2 8(w —nw, —y)dy




By Frequency convolution

Fs([image: image188.png]
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Fs([image: image192.png]


) = [image: image194.png]2 L5 F (@ — no,



)

Proof

If we have two function  f1(t), f2(t)

F1(t).f2(t) =  f(t) [image: image196.png]


  F([image: image198.png]


) = [image: image200.png]


  [image: image202.png]


(y) [image: image204.png]F,(w—y) dy




f(t) =[image: image206.png]1

A



(y) [image: image208.png]F,(w—y) dy
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f(t) =[image: image212.png]1




([image: image214.png]F(w — y)e’*“™) dw



)[image: image216.png]F(y)e”* dy



 

f(t) = [image: image218.png]R IACRAC)
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m     or    Ts  [image: image228.png]
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The sampling system:
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For the band limitation
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Recovering f (t) from the incoming signal
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The best Lp at the receiver has [image: image235.png]


Lp = [image: image237.png]


 m of the signal

Where
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but
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T [image: image242.png]F (w)=
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(t)  = [image: image246.png]wip  sin (wipt)




Like Freq. convolution, if we have two signals which are multiplicated in frequency domain then this is convolution in time domain

Fr ([image: image248.png]


) = T Fs ([image: image250.png]


). HLP ([image: image252.png]
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Then

f(t) = T [image: image254.png]= (). 2 Sl
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f(t) = T[image: image258.png]
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Special case if          [image: image264.png]
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2[image: image268.png]


m     &   WLP  =    [image: image270.png]


m
Fr(t) =  [image: image272.png]Y=o f(nT)
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The zeros are at

[image: image277.png]


m t  -  n π   =  m π                       where  m = [image: image279.png]



Maximum at      [image: image281.png]


m  t max  =  n π    
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Type of sampling

1- Ideal sampling.

[image: image283.png]



2- Exact sampling.
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3- Square pulse sampling.

[image: image285.png]



An idea about convolution theorem:

For the function f1(t) and f2(t), the integral

[image: image286.png]0= A® £C-0 ar




Defines the convolution of f1(t) and f2(t) . It is also f1(t) * f2(t)

f1(t) * f2(t)     [image: image287.png]


    F1(ω) F2(ω)

proof

F [f1(t) * f2(t)]   =   [image: image289.png]SULA@ f(E-1) dr



 ]  [image: image291.png]e Ut dt




                           =   [image: image293.png]LAM@UL, f(t—1) evtdt]dr



  

                             = [image: image295.png]L A@ F(w0)eT dr



  

Exact sampling
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Assuming the function
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Where   [image: image299.png]


   dt   =   [image: image301.png]wlls
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Using the convolution theorem

[image: image304.png]FO) R(0—y) dy
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That is to say F(ω-nωs) must be multiplied by a value which is independent from the frequency 

OR  :  shortly : no distortion but a dependent factor on ,n,.

Squared form sampling:

[image: image309.png]TNF(Y)
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[image: image311.png]F(w) = z f(nT) fms(z —nT,) e/t dt





But,  f(t) =  [image: image313.png]o Fop)eist



 d[image: image315.png]


1
          f(nTs) = [image: image317.png]oo Fwp)eie:™
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1
Fs([image: image321.png]


) = [image: image323.png][ S Flope™esmedwy [
(wp@" @™ Msda, [T s(t—nT,) e Jde




Fs([image: image325.png]


) = [image: image327.png]o [ Floee s do,




But  [image: image329.png]efmeet =3 8(t—nT)





Substituting,

T  :       [image: image331.png]


 s              ,  [image: image333.png]I




T   :        [image: image335.png]


1-[image: image337.png]
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Fs([image: image341.png]


) = [image: image343.png]L (% Fw) I

da,




          = [image: image345.png]



Fs([image: image347.png]


) = [image: image349.png]& IieeFlo+ne,



),   where S([image: image351.png]


) is the spectrum of the square pulses.

The demodulated signal is a distorted one.

Fs([image: image353.png]


) is distorted due to the multiplication by a factor which is dependent on [image: image355.png]


.

If it is necessary to sample with square pulses like this, we must use equalizer at the receiver to equalize the distortion.

[image: image356.png]Fsw) H(w) KF{w)
equalizer
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F [f1(t)*f2(t)] = F1([image: image360.png]


) F2([image: image362.png]


)

f1(t) . f2(t)  [image: image364.png]


F1([image: image366.png]


) * F2([image: image368.png]


)

f1(t) * f2(t) [image: image370.png]


F1([image: image372.png]


) . F2([image: image374.png]


)

Then we can say that:

Convolution of two functions in the time domain is equivalent to multiplication of their spectra in the frequency domain and the multiplication of two functions in the time domain is equivalent to convolution of their spectra in the frequency domain.

Graphical interpretation of convolution

In linear systems, graphical convolution is very helpful in analysis if f1(t) and f2(t) are known only graphically.

Let  f1(t) and f2(t) as shown

[image: image375.png]N1(t)
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3.Discrete Time systems

A discrete time system can be thought of as a transformation or operator that maps an input sequence x(n) to an output sequence y(n) as shown

[image: image377.png]X(n)

h(n)

y(n),




[image: image378.png]ORI





The term on the right hand side is the convolution equation for the discrete time system and states that, the output response for a given value of "n" is the sum of the impulse responses for all values of input.

Important discrete time signals

Sequences that play important roles in digital signal processing are:

1- The unit sample sequence

[image: image380.png]& (



 n) = [image: image382.png](

1

n=0
n#0




[image: image383.png]O(n)





2- The unit step sequence

[image: image385.png]U(



 n) = [image: image387.png](

1

n=0
n<o0




[image: image388.png]



3- The real exponential sequence

[image: image389.png]X(n)





X(n) = an         for all n

4- The sinusoidal sequence

X(n) = A sin (ω0n)       for all n

[image: image390.png]Xin)





The unit sample sequence is sometimes referred to as a discrete time impulse, where

[image: image392.png]= X(n) 8(n—k)




   =  x(k)

In general an arbitrary sequence x(n) can be written as follows:

X(n) = [image: image394.png]= X(k) 8(n—k)





U(n) = [image: image396.png]



Equivalent systems for parallel and cascade combinations

Using the associative and distributive properties, the equi unit sample responses for parallel and cascade linear shifted time invariant systems are shown:

[image: image397.jpg]S€

‘SUOHRUIQUI0D 9pEDSed pue [af[eied 10f swaysAs juofeamnby  zyy sandig

1aleseg apeose)

O+ () Yy = (u)y (1) (1)

(u)a ()Y f—— (u)x

(1)« (u)ly

's90uanbas UONEINp AUY OM) JO UONN[OAU0D Jo YIBUIT  [I°] aangyy

sapdures | — 4y + ' = y18ua]

ot Iy, oy

1 CEM 111 1] i 111

(u)Tx * (u)lx

sajdures Tn7 = yiBua sopdwes Ty = y38ua

-

i alle

S

.-—q~.

L1 el

(u)%x (u)lx

SW3LSAS 3WIL-31340sIa €'}

st Anfiqers jo asuos sty “sreusis indur ajqeuosear Aq pajoxe uaym  dn moyq,,
10u $20p 1ndino st Jeys St wasks Aue Jo Auadord sjqensap € “ued jsow ) 10|

“ fungess indino papunog-indu| papunog z'¢'|

1T "8y ur se oq o)
UMOUS 9 UBD SWIISAS JUBLIBAUL 1JIYS JEAUI[ 9PBISED PUBR [o11eed 10§ sasuodso.
-wes Jiun Judpeamba oy ‘sarnadold sAnRGIISIP pue aAnRISOSSE au1 Juisp)
1 — N + 'N woxy poutwpp |
— € + £ 01 spuodsaLIod YoIyM ‘G SI UOHN[OAUOD By JO uoneInp ay) Aiym ‘g
§i0q dIe (u)y pue (#)x JO UOHEIND Sy Byl pRdNOU S1 I 8 [ "B up “[1°|
PARNSOII SE T — I + 'n 01 O [RAIIUL DY) 10} O1ZUOU SI UONNJOAUOD )
pue ‘| — TN + 'n/ S1 uonnjoauod ay jo 13Ul ay) 1eY) udds st 1 0107 )
-urdaq s20usnbas yons om} Jo UONNJOAUD oY) Jo uonenores reaydesd oy
-pIsuod £¢g ‘uoneInp anuy Jo Os[e aq 0} U A[Ised SL ()% % (u)'x uonnjoa
dyy ‘sadtpul S pue 'y spFus] Jo speArdiul aandadsal 1oao K[uo oxzuou
Ko ‘st yey) “On pue |y uoneINp anuy Jo are (u)ix pue (u)lx sedusnbas J1

"¢ 91dwrexg 10y wns uonN[oAUOd Fululelqo Jo Kem Jeyouy 1 dandyg

¥ 9 s %1y I-
‘ 1
» (1
AR Al !
2+ e+) | e .
! .
u !
|
[} ¢ +
| (z-wyy
I
i
i
u |
; +
i
| (1—uy
1
u
+
(u)y
1

SW3LSAS 3WIL-313H0SIA 40 STYLNIWVYANNI/L ve




4- Digital systems

4-1- the Z-transform

If we have a signal  f(t), then after sampling, it becomes

fs(t) = [image: image399.png]Y=o f(nT,) 8(n—nT,)




The spectrum    Fs(ω) =  [image: image401.png]= fDeTier dt




Fs([image: image403.png]


) =  [image: image405.png]—f(nT) 8(n—nT)e™** dt




Fs([image: image407.png]


) =  [image: image409.png]Yoo f(nT,) e77ems




With the substitution;

Z = [image: image411.png]e 1wl




Fs([image: image413.png]


) = F (Z) = [image: image415.png]Yoo f(nT,) 27"



  ………………………….(1)

This transformation is known as the Z- transform, where f(nTs) are the discrete values f(0), …, f(Ts), …, f(nTs)   i.e.      f0, f1, f2,   …, fn.

Equation (1) is double side Z-transform because n varies from   -[image: image417.png]@ to + o0




In the case of f(t) = 0     for   t   < 0

Then f (nTs)  = 0         for   n  <  0

And we have only one side Z-transform

Or simply

F (Z ) = [image: image419.png]Yoofn z7"




Example

Fn = an  , a > 0  , n = 0, 1, 2, …

F ( Z) = [image: image421.png]


 +  …

The geometric series   [image: image423.png]


converges  for  |[image: image425.png]-l <1




|a| < |Z|    or       |Z|  >  |a|

[image: image426.jpg]172 4/DIGITAL FILTER DESIgN

4.1.1 Bilinear Transformation

Another approach to the numerical solution of the differential equation given in
Eq. (4.4) is based upon application of the trapezoidal rule to approximate the
integral. Rather than show a general proof, the method will be illustrated by
using a first-order differential equation and transfer function H(s) given by

(1) + agy,(t) = byx(t) (4.18)
H,(s) = bo/(ays + ag) (4.19)
The fundamental theorem of integral calculus allows us to write
¢
Yalt) u\ Ya(t)dt + y,(19) (4.20)
o

Since Eq. (4.20) holds for any ¢ and any fy, weletr = nTand 1, = (n — |)T
to get

nT

) = [ e+ yin - .21

Using the trapezoidal rule to approximate the integral and assuming equality a

recursive relationship for determining Yo(nT) can be found from Eq. (4.21) as
follows:
Ya(nT) = y,[(n = DT) + (T/2)]{ y,(nT) + y.[(n — D71} (4.22)

The derivatives in (4.22) can be evaluated from (4.18), giving the following
difference equation for the approximate numerical solution of the differential

equation:

YanT) = 3 [(n = DT] + T/24 222y (1) + 20ty
1
by

5 wis = DT+ 2x[(n — DT]
b_ Q.

(4.23)

Taking the Z transform of (4.23), with X(z) and Y(z) the Z transforms of x,(nT)
and y,(nT), respectively, and rearranging to get Y(z) over X(z), the system
lunction can be shown to be

H(z) =

Y(2) _
X

a -
T

4.1 USING NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS 173

=1
[’Jv T,

(4.24)

By comparing Egs. (4.19) and (4.24) we see that H(z) can be obtained by
replacing s in H,(s) by (2/T)(1 — z7N/(1 + 7Y, as follows:

H(z) = H,(s)|

Is*[(2/T)(1 -2

N+

(4.25)

By using a state variable representation of the general differential equation
given in Eq. (4.4) and the basic approach just discussed, it can be shown that
the transformation derived above for a first-order differential equation holds in
the general case. This bilinear transformation is characterized by the following:

The image in the

S

2(1-2z7Y
T +z7ly

_1+sT/2
1 =5T/2

(4.26)

z-plane of the j{) axis from the s-plane is shown in Fig. 4.3.

It can be shown in a fashion similar to the previous section that the bilinear
transformation given in Eq. (4.26) has the following properties.

(1) The entire jQ axis of the s-plane goes into the unit circle of the

z-plane

(2) The left half side of the s-plane is transformed inside the unit circle.

4T L= 1+8T2
1-8T72
=Pl
ol
\hvmno G 1 Q=T
\\ A Q=67 =1t
Q=87 2=9,
Left By .
\E: o0* a R =+teo @q R0 %
\n_&a 0 Real =1 Real
A=t o lmaY
-2/T 1+Q272/4
S™qa=-yr
yo_ QT
apr 1+Q272/4

Figure 4.3 The image in

z=[1+87/2)/[1-5T/2).

the z-plane of the jQ axis of the s-plane for the mapping




Properties of the Z- transform:

1- Linearity

Z { c1 fn + c2 gn } = c1 Z { fn } + c2 Z { gn }

Z { c1 fn + c2 gn } =  [image: image428.png]Yo—o(clf,+ c2g,)Z7"




                              = [image: image430.png]£, )27+ 6 X0 9, 27"




                              =  c1 Z { fn } +  c2  Z  { gn }

2- Time shifting

fn            [image: image432.png]


F(Z)

fn+k         [image: image434.png]


Z { fn+k  }

Z { fn+k  }  =  [image: image436.png]Yoo fns 27"



 

Let n+k = n1
Z { fn+k  }  =  [image: image438.png]


 [image: image440.png]£, 27




                 = [image: image442.png]Z* |



 [image: image444.png]Xr=ofn, Z7™



 - [image: image445.png]


 [image: image447.png]


]

                =  [image: image449.png]Z¥ F(Z)



  - [image: image450.png]


 [image: image452.png]


        left shifting

If we make a right hand side shifting, that is to say delaying of the signal, then:

Z { fn-k  }  =  [image: image454.png]X

o

Zz"



 

Let n-k = n1
Z { fn-k  }  =  [image: image456.png]


 [image: image458.png]



                 = [image: image460.png]Z7F |



 [image: image462.png]Xr=ofn, Z7™



 +[image: image463.png]


 [image: image465.png]) Jofpid
efa, 27



]

                 =  [image: image467.png]Z7¥F (Z)



  - [image: image468.png]


 [image: image469.png]


     because fn  = 0     for   n < 0    

Z { fn-k  }  =    [image: image471.png]Z7*F(Z)




3- Similarity

Z { λn  fn  }  =  [image: image473.png]YomoA® f,Z7"



 

.         = =  [image: image475.png]Erofa (7



    =    F ([image: image477.png]



4- Diff

F (Z ) = [image: image479.png]Yoofn z7"




[image: image481.png]


 [image: image483.png]—n-1





[image: image485.png]


 [image: image487.png]



New values    n fn
Then   Z  { n fn[image: image489.png]—Z F'(Z)





Generally:

Then   Z  { nk fn[image: image491.png]1=(z2) F)




First differentiating   by z, then multiplying by –z , k times.

5- Integration

[image: image492.png]Fy) = if.. "
=




[image: image494.png]T2 dy= [PTif, vy dy



  

                       [image: image496.png]


  

If       [image: image498.png]


      tends to  [image: image499.png]


     

Then

Z [image: image501.png]



6- Z- transformation of the differences

[image: image502.png]Afuz fosr—fu 0,1,2,





[image: image503.png]ZWAf 3 =Z{fusd + Z{f )




Using the shifting property

[image: image504.png]=
2G5, )= 27 [(F@ = ) [, 27 ]-F@
o




                                                   [image: image506.png]=z[F(2)-f, ]| - F@2





[image: image507.png]ZAf,3}=Z-D)F2)-Zfy




[image: image508.png]A* £,
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[image: image509.png]fasz —fasr—fann tha




[image: image510.png]fasz =2 fosr tfu




[image: image511.png]Z {0 fo )} =Z{fasad 22 (s} + Z {0}




[image: image512.png]-1
= z* [F(2)— Zf.. z]-2Z[F(2) - f, 1+ F(@)
=




[image: image514.png]=Z*[F(2)—fo — f Z7']-2ZF(2)+ 2Z fy+ F(z



)

[image: image516.png]=(Z-1)°F@)- fo(z°-22) - Zf



  

[image: image518.png]Z {A°f, } =



 [image: image520.png]=(Z-1)° F(2) - Z Zi=o(Z— 1) A™fy




Generally

[image: image521.png]



[image: image523.png]Z (0Af, ) =



 [image: image525.png]=(Z-1)* F(Z2)— z ZE(Z—1)* 177 AYf,




Examples1:

[image: image526.png]



[image: image527.png]fo
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Z{ n } =  [image: image529.png]


    =  [image: image531.png]e

e

=




Using difference

[image: image533.png]A'n



 = (n-1) – n   =  1

[image: image534.png]A*n
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                                                           [image: image536.png]fasz —fasr—fann tha




                                                           = ( n + 2 ) -  2  ( n + 1 )  + n  = 0

[image: image538.png]


 [image: image540.png]=(Z-1)° F(2) - Z Zi=o(Z— 1) A™fy




                       0  [image: image542.png]=(Z-1)*F(@-2z(z-1)A f, —ZA'f,




0 [image: image544.png]=(Z-1)°*F(2)-zZ




[image: image545.png]F(2)= ———
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Shifting by  (1) towards the r.h.s.

We have  :  Z { gn-k } = [image: image547.png]z* (G
@+ Z;t
2 xGn Z "




Then

Z { n-1 } = [image: image549.png]z7t(
G2+ X





              =  [image: image551.png]= (uful

+ g, z)




              =  [image: image553.png]Z-1)°



     -   1

[image: image555.png]


    -   [image: image557.png]


     

Using the differentiation prop.

[image: image558.png]



                                                           = [image: image560.png]2z _ _Z

3 (-1 P





Example2

Fn = sin (n[image: image562.png]


0 T) ,    find   F(Z) 
Fn = sin (n[image: image564.png]


0 T) = [image: image566.png]Jmiet
ot
/™

2





gn = [image: image568.png]g/n@ot




G(Z) =  [image: image570.png]Yorgelneet z7T



  =   1 +  z-1 [image: image572.png]el@et 4 772 gl2wot 4 .





                                             =  [image: image574.png]



If converges for 

[image: image575.png]| @7 @ef |
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Or

[image: image576.png]Izl = 1




Z [image: image578.png]B Izl > 1
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c.   fn = n e nt
i) using the differentiation property

Z  { n fn[image: image584.png]—Z F'(Z)
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ii) using the similarity property
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Z{ n } = [image: image592.png]=
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The inverse transformation

Z domain [image: image598.png]


  time domain

Given  F (z)   , fn is required

F ( Z) = [image: image600.png]Yoofn z7"
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a.  If    F(z) is a rational function in Z

That is to say
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Advantage: quickly computation

Disadvantage: in general  fn is a function in n 

b. Direct form 
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Generally
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                                                                           n= 0,1, 2, … 

that is to say          [image: image623.png]K

a

(-2
=




i) Differentiating, then multiplying by – z2 k times.

ii) Then taking the limit when z [image: image625.png]



iii) Then dividing by [image: image627.png]k!




It is to be noted that  for  a system as in 
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Which has a transfer function G (Z), input X(Z)

The output Y(Z) is :

Y(Z) = G (Z) . X ( Z )

c. Limits of F ( Z )

F ( Z) = [image: image630.png]Yoofn z7"




i) Start value      [image: image632.png]fo=lim,__ F(Z)
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This end value is not existed for oscillators.

Proof
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                                    from the definition
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             shifting property
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And we have:
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Then 
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Substituting
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d. Inverse transform using the residues
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e. Partial fraction method
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      ratio in Z

Condition

F( Z ) has only simple poles
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F (Z ) = k + [image: image705.png]2
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F ( Z ) can have also multiple poles.

Applications

a) Sampling systems     PAM system

b) Solution of difference equations

c) Digital signal processing and digital systems    

a. Sampled systems
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Z[image: image709.png]{vi,} = W(Z2), Z{vy} = B(Z)




Z [image: image711.png]{h,} = 6(Z)
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G ( Z ) = pulse transfer function equivalent to H (ω)

If we have more than one circuit in cascade with G1( Z ) ,  G2 ( Z ), …
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b. Solution of recursive equations ( difference equation)

Example for a rec. equation
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We find   fn, which is the solution
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Given I0   and the circuit

One find In  for n = 1, 2, 3, …

For the loop n,
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                                                                             N=0,1, 2, 3, ….

Z { In } =  F ( Z )
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From  F ( Z ) through inverse Z transformation we can find fn which is In
C. Digital signal processing and Digital systems

Digital four pole with 3 operations

1- Delaying

[image: image723.png]X(2)

Y(2)
Z-l .





Y ( Z )   =   Z-1   X( Z )

2- Mltiplication

[image: image724.png]X(2) ‘ Y(2)





Y ( Z ) = a X ( Z )

3- Addition
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Y ( Z ) = X 1 ( Z  ) + X 2 ( Z ) + X 3 ( Z )

Example
V 2 ( Z ) = a1 V 1 ( Z ) Z -1 + a2 V 1 (Z ) Z -2
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As an example, consider a system response, Fig. Ex below:
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b- g ( t) 

G ([image: image731.png]
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g (t) =fA (t) * h(t)                                   (2)
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From (2)
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c- conditions

g(nTA) = k . f (n TA)

                                                 n= 0, 1, 2 ,3,….

g(nTA) [image: image745.png]“g yoo Snwglt-vTs)
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k . f (n TA)

this equation is satisfied if 
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This is always satisfied if 
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d- the BW must be    [image: image756.png]
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                           Fig. Ex.
5- Analog signal processing

The signal to be processed cannot be applied directly to an ADC, because:

1- It may contain noise

2- It may contain unwanted (high) frequency components.

3- It is level (mv) is too low, and 

4- It is continuously changing. As the signal is analog in form, the processing of necessity must be analog.

The analog processing might include the following:

1- Filtering

2- Amplification

3- Sampling

The following figure presents a block diagram of a typical signal processing system.

[image: image760.png]~49-

..5 About DSP Applications:

A digital processing system contains simply five
sections as shown. The input and output sections perform
analog processing of the signal. The input section pro-
cesses the signal so that it is in a state that allows
it to be readily converted to a digital format, the out-
put section processes the signal so that it can be used.
The digital processor is the main portion of the system.
The analog to digital converter (ADC) and the digital to
analog converter (DAC)serve as the interface between the

digital and analog portions of the system.

Digital
procies— DAC out- p——
sor put

Block diagram of a digital signal processor

Figure 8, shows a block diagram of a typical input section

Energy Filter Amp H S/H‘—J’_" to ADC

The source of the signal is usually the output of a

transducer. Examples of TD's are thermocouplers, photodetec-
tors, microphones, phonograph cartridges, tape heads, flow-
meters, pressure sensitive devices, strain gauges, and ac-
celerometers. In some cases, situations there may be no need

for a transducer such as electrocardiogram to investigate




The analog signal is processed, i.e., it is put in a form that allows it to be readily converted into digital format.

The following figure shows a block diagram of the input section
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The source of the signal is usually the output of a transducer. This is a device that converts energy (e.g. , thermal, …) into electrical energy.

Examples of transducers are thermocouples, photo detectors, microphones, tape heads, flow meters, pressure sensitive devices, strain gauges, and accelerometers.

The remaining units of input section will include filters, an amplifier and a sample and- hold (S/H) device.

A Sample and - hold (S/H) circuit is shown 

[image: image762.png]X(t)
c
+

S/H circuit




The holding process would have an effect on the processing operation.

Such an effect can be explained as follows:
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Holding means multiplying by K([image: image765.png]
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The digital signal from the processor should be applied to an DAC, which generates a related quantized analog value at its output. This output signal is a continuous signal, however, as each n bit number from the processor will generate a particular voltage, the discrete change in the output will cause a jump in the DAC output. These jumps give rise to many high frequency components that are unwanted.  Prior to applying this signal to the output section, the high frequency jumps must be removed.

The following figure shows a block diagram of a typical output section.
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Block diagram of output section




To smooth of the waveforms, a low pass filter usually follows the DAC.

[image: image777.png]Lp filter





The output signals of the DAC (Lp filter may require amplification) so that it can be in usable form. The signal is then applied to the output transducer. This will be a device that receives an electrical signal and converts it to another form of energy (e.g. loudspeaker, or cathode ray tube…).

6- Digital signal processing

The rapid pace at which digital  signal processing (DSP) is beginning to appear in many items of military, space, and commercial equipment can be attributed to the advantages over and improvements to units that employ analog signal processing. Another advantage of DSP is the use of digital components. These units require and provide binary signal levels, causing them to immune to external analog noise and relatively stable.

Drifting of their characteristics with time and temperature will have a minimal effect on their performance. The performance of each unit will be identical to every other one, providing a high level of confidence in their output values over a period of time. In addition, the accuracy of the output is fixed and not subject to component drift.

Generally, elimination of input/output variation due to time, temperature, part replacement, and noise together with growth of digital technology are some of the major reasons why DSP has grown rapidly over the past few years.

Although, the advantage of the hardware used in DSP, it should be mentioned that much of the advantages of DSP arise from its use of software. The following figure illustrates an overview of how the field of DSP has emerged and spread out.
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6-1- Digital filters

The digital filters are one of the major subdivisions of the field of DSP.

Digital filters are divided into Finite Impulse Response (FIR) filters and Infinite Impulse Response (IIR) filters.

FIR digital filters

This type of digital filters is a filter whose response h(n) is zero outside some finite limits.

i.e.      h(n)  = 0      for    n > N1    and    n < N2,    with N1   [image: image779.png]


   N2  

These filters are generally realized non recursively. FIR filters are also transversal filters.The transfer function of FIR filters can be written as:

[image: image781.png]H(Z) = Xy-pa, z°"



 

Or a difference equation of the form:

[image: image782.png]Y = ) a x(n= k)
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An alternative realization can be obtained by writing H(Z) in the following special factored from:

H(Z) = a0 + Z-1 [ a1 + Z-1 (a2 + Z-1 {    …    + Z-1 (aM-1  +  aM Z-1 ) … } ]

Accordingly, for an FIR filter, with an impulse response duration of N samples.

H(Z) = [image: image784.png]dcs
X(2)



  =   [image: image786.png]


  , the output can be written as follows:

Y(n) = a0 x(n) + a1 x(n-1) + a2 x(n-2) + …   + aN-1  x(n-N+1)

This can be realized in a direct form as:

[image: image787.png]//'
o / y
/ y

y(n) = éo % (n) + a] x(n-1) + .... + a x (n-N+1) .

N-1

This can be realized in direct form as in Fig.2.

y(n)

Bilgd2. iDivect jform. for EIR.filters

Because nqggggﬁ£§}lg‘digital filters require very high
degree to produce a sharp attenuation shape, they are not
often used for real-time filtering of waveforms.

Infinite Impulse Response (ITR) digital filters:

IIR digital filters are generally realized recursively.
That is to say that in infinite impulse response digital

filters, the past outputs are required to determine the

present outputs.





An important special subset of FIR filters has the linear phase characteristic.

A theorem: if h(n) represents the impulse response of a discrete time system, a necessary and sufficient condition for linear phase is  that h(n) have finite  duration N, and that it is symmetric about its midpoint.

For a causal  FIR filter whose impulse response begins at zero and ends at N-1,  h(n) satisfies

H(n) = h(N-1-n)    for n=0, 1, 2, …    , N-1
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For the case where N is even,
[image: image790.png]H(jw) =




    

    =  [image: image792.png]SO h(n) e7iem



  +  [image: image794.png]=iz h(n) e77em




Let  m= N-1-n   in the second sum, gives:

[image: image795.png]0
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But from symmetry, h(N-1-m) = h(m), and the summation can be reversed to give

H(jω) = [image: image797.png]SO/ ) gmsom =
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Linear phase                         magnitude

For N an odd number, a similar derivation leads to:

H(jω) = [image: image817.png]g JoN-1)/2



 (  h((N-1)/2) +  [image: image819.png]Tl 2 h(n)



cos (ω ( n – (N-1)/2))

                                                                                                                   N odd

In many cases a linear phase characteristic is required throughout the pass band of the filter to preserve the shape of a given signal within the pass band.

Such an FIR filter can be realized in a hardware form directly from the difference equation of the output y(n).

As an example suppose,

H(Z) = a0 + a1 Z-1  + a2  Z-2  +      …    + a6 Z-6

Direct form realization is as before

Also from H(Z),    Y(Z) = a0  X(Z) + a1 Z-1  X(Z) + a2  Z-2 X(Z)   +      …    + a6  X(Z) Z-6

Y(n) = a0 x(n) + a1 x(n-1) + a2 x(n-2) + …   + a6 x(n-6)

The following figure shows the hardware realization.

This is a simple structure for realizing the filter sing a single computational elements ( consisting of a multiplier and an adder), a shift register to hold the filter states, and a ROM for the collections. By means of a multiplier and an accumulator, a single output sample can be computed by successive addition as the shift register circulates.

 During the 1st computation [a6 x(n-6)], the new input x(n) enters the shift register while x(n-6) is shifted off the end. Afterward, each iteration includes a circulation of one datum around the shift register as shown.

When y(n) is obtained, it is sent on while the accumulator is cleared, then the next major cycle  begins.

[image: image820.png]~35-
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Infinite Impulse Response (IIR) digital filters

IIR digital filters are generally realized recursively. That is to say that for infinite impulse response digital filter, the past outputs are also required to determine the present outputs.

The impulse response h(n) for such a filter therefore must obey  h(n) = 0     n < 0

[image: image821.png]



The most general form of H(Z) of IIR filters can be written as :
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The general linear constant coefficient difference equation can be also given by :

[image: image823.png]



The rational system fraction H(Z) can be viewed as two systems in cascade, that is, 

H(Z) = H1(Z) . H2(Z),   where

H1(Z) consists of the zeros of H(Z) and H2(Z) consists of the poles of H( Z)

H1(Z) = [image: image825.png]



H2(Z) = [image: image827.png]



a- The direct form realization of such function is as follows:[image: image828.jpg]218 5/REALIZATIONS OF DIGITAL FILTERg
5.1 DIRECT FORM REALIZATIONS OF IIR FILTERS
Using this system function and the properties of the Z transform. it was shown P,
previously that the system with input x(n) and output v(n) could be realized by
the following linear constant coefficient difference equation: *(ry
N M
y(n) = — »M_ ay(n — k) + >Ms bex(n — k) (5.2)

A realization of the filter using Eq. (5.2) as shown will be called the direct
form [ realization. The output y(n) is seen to be a weighted sum of the input
x(n) at the present time n, past inputs x(n — ) fork = 1,2, .. ., M and past
outputs y(n — k) fork = 1, 2, . . ., N. The direct form I realization is shown
in block diagram form in Fig. 5.1. The delay blocks represent a form of storage
and delay, the ®) a multiplying operation, and the @ a summing operation.
The number of delay blocks is easily seen to be M + N for this particular case.

Another realization of Eq. (5.2) can be obtained by breaking /(z) into a
product of two transfer functions H,(z) and H,(z), where H,(z) contains only
the denominator or poles and H,(z) contains only the numerator or zeros, as
follows:

where

The output of the filter is obtained by cale
p(n), obtained from operating on the input with filter /7,
on p(n) with filter Hy(z) as shown in Fig. 5.2, The tran:
are as follows:

P(z) = H,(z) * X(2)

H@) = H(@) - Hyz) = Y(2)/X(@) (5.3a) Y() = Hy(z) P(2)

Substituting (5.3b) and (5.3c) into (5.4) and (5.5)
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b- Direct form 2 (2- canonic structure)
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                                                                                   M = N = n
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c- Canonic structure

[image: image832.png]-14-

BN Canonic Structure

x(z) » y(z)

This is the transpose of 2-canonic in 2.

4. Cascade form:

k
H(z) =TT Hi(Z), and Hi(Z) is either recond or
z7=1
-1 -2
~ aOi + a1iZ + a2iZ
= = 2
1+ b,.2 + b,.2Z
et 24

or a 1 st order section, i.e.

=
+ a1iZ
Z—1

A0k

b

H,(2) =

11




This is the transpose of the 2- canonic 2.

Three important function for H(Z)

1- Magnitude squared response
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2- Phase response
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3- Group Delay

[image: image835.png]



In case of N = M = 2  ( 2nd order) H(Z) becomes:

H(Z) = [image: image837.png]
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The difference equation should be 

Y(n) = b0 x(n) +b1 x(n-1) + b2 x(n-2) –a1 y(n-1) –a2 y(n-2)

To realize such IIR filter directly using shift registers, amplifier, adder and a ROM for the calculations, minor changes in the previous structure will be done.

Design techniques for digital filters

1- FIR filters:

The treatment is focused on the important class of linear phase FIR filters. There are essentially three well known classes of design techniques for linear phase FIR filters, namely the window method, the frequency sampling method, and optimal filter design methods.

a- windowing

since the frequency response H(jω) of any digital filter, is periodic, it can be expanded in a Fourier series:

H(jω) = [image: image840.png]Yoo h(n) e 7om




Where 
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A successful method to obtain an FIR filter is to use finite weighting sequence [image: image843.png]


(n), called window to modify h(n) to control the convergence of the Fourier series.

Window characteristics

. Small width of main lobe of the frequency response of the window containing as much of the total energy as possible.

. side lobes of the freq. response that decrease in energy rapidly as ω tends to π.

There are some windows such as rectangular, the generalized hamming window, and Kaiser Window.

Windowing technique is illustrated as follows:
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The sequence [image: image846.png]


 h(n) . w(n),      outside the interval       [image: image848.png]



[image: image850.png]h(n)



is zero exactly.

[image: image852.png]h(n)
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  h1(n),

A realizable sequence g(n), which is shifted version of h1(n) can be used as the designed filter impulse response.

Example:       
[image: image854.png]-W1





h(t) =  [image: image856.png]



b- Frequency sampling

In the frequency sampling, we specify the desired frequency response Hd([image: image858.png]


) at a set of equally spaced frequencies, namely  
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                                                                                     K = 0, 1, 2,   …   ,     [image: image861.png]


       M odd

                                                                                     K = 0, 1, 2,   …   ,     [image: image863.png]nis



       M even

                                                                                     [image: image865.png]a =0 or




Thus an FIR filter has a representation form of the "frequency samples"
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The main idea is that a desired frequency response can be approximated by sampling it at N evenly space points and then obtaining an interpolated frequency response that passes through the frequency samples.

c- Optimal (minimax error ) filters

The window method and the frequency sampling method are relatively simple techniques for designing linear phase FIR filters. A major problem is that lake of precise control of the critical frequencies such as [image: image870.png]


p and [image: image872.png]


s. The method uses the chebychev approximation. Consequently, it is desirable to derive a set of conditions for which it can be proved that the solution is optimal ( in the sense that the peak approximation error over the entire interval of approximation is minimized and unique).

Several standard optimization procedures including linear programming can be used to solve for the filter coefficients of the optimal (minimax) solution.

2- IIR filters

Mapping procedures can be used to transfer continuous time filters into IIR digital filters. A second method for designing IIR digital filters is direct closed form design in the Z-plane.

a- IIR filter design from continuous time filter:

This is a reasonable approach because:

1- The art of analog filter design is highly advanced.

2- Many useful analog design methods have relatively simple closed form design formula.

3- In many applications it is of interest to use a digital filter to simulate the performance of analog filter.

1. Impulse invariance

The impulse response of the digital filter, designed using this technique, is a sampled version of the impulse response of the analog filter. H(Z) is obtained from H(S) using the mapping
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,  T sampling time
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The analog filter must be band limited      - [image: image878.png]In
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To decrease analog effects,       [image: image880.png]


     should be large

The digital and analog freq. response become comparable.

2- Matched Z-transform

This is a direct mapping technique for poles and zero's, from the S-plane into the Z-plane.

This is defined by the relation

[image: image881.png]



For complex poles ( zeros )
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There is aliasing effect

3- bilinear transformation

This transform provides simple mapping, that maps the entire jω axis to the unit circle in the Z-plane.
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Procedures

[image: image887.png]


     is the analog frequency
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 ,        highly nonlinear relationship between [image: image890.png]


  and w

To compensate for the frequency warping, the desired critical set of digital filter frequencies  ω1, ω2, ω3, ω4, the analog filter frequencies are computed from the equation before.

· The analog filter is designed with the warped cut off frequencies

· Apply the bilinear transformation to this analog filter to get the desired digital filter.
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B. direct design of digital filters

1. Magnitude squared function design

2. Time domain design

3. Alternative direct design method

c- Optimization methods

1- Minimum mean squared error

The squared error = [image: image893.png]L 1H Gw)| = |HaGw) 1)



  is minimized.

2- Minimum Lp error method

The problem of designing an IIR filter that approximates a desired magnitude response or a group delay response can be formulated as a minimum Lp errors.

Ex:

ωA =2 π  64  KHZ.
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   rad/sec
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H(Z) = k1 k2 k3 H1(Z) H2(Z) H3(Z)
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7- Algorithms, Analysis and Applications

7-1 Discrete Fourier Transform (DFT)

Fourier transformation of a discrete time signal x(n) of finite length  

[image: image921.png]


      is written as
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, with relative frequency [image: image926.png]



This [image: image928.png]


can be computed for discrete values
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4. Algorithms, Analysis and Applications:

4.1 Discrete Fourier Transform (DFT):

Fourier transform of a discrete time signal x(n)
of finite lenght ( O<n<N—1).

-1 . :
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n=0
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x(n)
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Then
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Exact inversion of set of equations is possible

Inverse DFT is defined by:

      [image: image943.png]
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        ,  [image: image947.png]



  It is to be noted that each      [image: image949.png]


 is computed by N-1 multiplications and additions. Totally (N-1)2 arithmetic operations are needed.

Fast Fourier Transform (FFT) Algorithms:

Fast fourier transform algorithms are efficient method to compute the DFT.

Let N = 2N1   (N is assumed to be power of 2, radix 2), and split the sum into even and odd terms.
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  Ok
   Ek  and  Ok   are DFT's of length  N1 =  N/2  and k= 0, 1, 2, 3 , …, 2N1 -1

[image: image956.png]



The process can be continued until you are left with two point DFT's to be calculated.

[image: image957.png]-32-
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There is also decimation-in-frequency (DIF)algorithm.

4.3 Effect of finite word length in DSP:
* 1

4.3.1 Round off or truncation errors:

Even though, the input to a digital filter

is represented with finite word length (e.g.through

A/D conversion), the result of processing will

naturally lead to values requiring additional bits

for their representation. For example, a b-bit data

sample multiplied by a b-bit coefficient results in
a product whicih is 2b bits long. If in a recursive
realization of a filter, we do not quantize the

result of arithmetic operations, the number of bits

required will inerease indefinitely.




Ex:

8-points FFT obtained by successive splitting to X(k) for all k 

[image: image959.png]
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        ,  [image: image963.png]



X(0) = x0 +x1 + x2 + x3 + x4 + x5 + x6 + x7

X(1) = x0 +x1  w1 + x2  w2+ x3  w3 + x4 w4 + x5 w5 + x6 w6 + x7 w7 w7
But      w1    =   [image: image965.png]


     =  - w5
                  W2   =  - w6
And so on for    X(2)  …,  X(7)

It is to be noted that, the number of stages m is given by:  m= log2 N  and N/2 complex multiplications are required.

Then, the total number of  arithmetic operations becomes:

(N/2) log2 N

This algorithm has been called the decimation in time (DIT) algorithm, since the input sequence is decimated at each stage of the process. Accordingly the input sequence is divided into small sequences for processing. The flow graph method used is shown.fig

Effect of finite word length in DSP's

· Quantization

· Overflow

· Limit cycles

Errors

8- Image Processing and computer vision
Introduction

A signal is defined as any physical quantity that varies with time, space or any other independent variable or variables

S(t) = 5t.

S(x, y) = 3x + 2xy + 10y2
A speech signal cannot be described functionally, by expressions. In general, a segment of speech may be represented to a high degree of accuracy as a sum of several sinusoids of different amplitudes and frequencies, that is as 
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 ,      where
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 are the sets of possibly time varying amplitudes, frequencies and phases respectively.

Classification of signals

Multichannel and multidimensional signals

The signal  S(t) = A sin 3πt,   is a real valued signal, 

However, the signal   S(t) = [image: image971.png]Ae®™ = Acos3mt +jsin3nt ,



   is a complex valued signal

In some applications, signals are generated by multiple sources or multiple sensors. Such signals, in turn, can be represented in vector form.

[image: image972.png]



The figure shows the three components of a vector signal that represents the ground acceleration due to earthquake. The set of P = 3 can be represented by a vector   S3 (t), where

[image: image973.png]51 ()
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We refer to such a vector signals as a multichannel signal

In electro cardiograph, for example, 3 lead and 12 lead electro cardiograms (ECG) are often used in practice, which result in 3- channel and 12-channel signals

Let us now turn our attention to the independent variables. If the signal is a function of a single independent variable, the signal is called a one dimensional signal.

On the other hand, a signal is called M-dimensional, if its value is a function of M independent variables.

The picture shown, is an example of a two dimensional signal, since the intensity of brightness I(x, y) at each point is a function of two independent variables. 
[image: image974.png]vi
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On the other hand a black and white TV picture may be represented as I(x, y, z) since the brightness is a function of time.

Hence such signal may be described by three dimensional signals.

In contrast, a color TV picture may be described by three intensity function of the form Ir(x, y, z), Ig(x, y, z), Ib(x, y, z).

Hence the color TV picture is a 3-channel, three dimensional signals, which can be written as a vector 
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Image Representation

The image is represented by the image function

F(x, y)    or    f(x1, y1)       or    f(x)      etc

Where the arguments of the image function that is, the independent variables (x, y   or    x1, y1   or     x ) are spatial coordinates related to physical locations in the sensor image plane and f is the intensity (currents, volts, etc. ) at these locations.

The range of the values of   f  is called the grey scale range.

If f takes on at most two values, the image is said to be binary.

Each of these quantities has an associated set of units.

X1 and x2 are often measured w.r.t. or in multiples of image plane dimensions (e.g.  pixel units, pels, or simply pixels),and f is often expressed in terms of sensors intensity units (e.g. volts, coulombs) which are rarely mentioned.

Image basis functions:

A general separable linear transformation on an image matrix

[F] may be written in the form

[F] = U T [ f ] V                                                          ( 1 ) 

where [ f ] is an N X N image function matrix, and U and V are matrices that effect the appropriate transform.

An image function matrix may be written in terms of basis function matrices as :

[ f ]  =  [image: image979.png]fur fio
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 =  [image: image981.png]


  + [image: image983.png]fiz



  + …       + 

+   [image: image985.png]


                                                                        ( 2 )

The inverse of equ. (1) is now considered. For practical reasons as well as ease of presentation, it is assumed that U and V are orthogonal matrices ( i.e. they are     composed of  orthogonal column vectors, therefore [ f ] may be recorded by computing the inverse transform as

[ f ] = U [ F ] V T                                                         ( 3 ) 

 Decomposing the transformed function [ F ] as in (2), yields:
[ F ] = [image: image987.png]


  + [image: image989.png]


  + …       + 

+  [image: image991.png]


                                                                        ( 4 )

Eq. (3) may be expanded as 

[ f ] = [ u1  u2  …   uN ] [ F ] [ v1  v2   …    vN ] T                                              (5)

That gives, from (4), (5):

[image: image993.png]


      
Whereas    Fkl represents the projection of the image function matrix onto the transfer basis function       >  Vk  , Vl  <
Eq. 6, indicates that the image function is recorded by summing the transfer basis functions weighted by the corresponding projection.

This is shown in Fig. 1:
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This result, although intuitively appealing also suggests applications since:
1- In the process of identifying certain image features, it may be appropriate to choose these features as basis functions, compute the transfer, and thereby determine the content of each of these features in the image.
2- Images (or elements of images that may be represented or approximated by the weighted sum of a small number of the basis functions of a particular transform may be efficiently stored and /or transmitted in transformed domain.
Relationship of image processing and computer vision to 2-D signal processing, pattern recognition, computer graphics, and AI,   …      should be studied.
Signal processing:
Examples are the statistical models that underlie image enhancement by histogram equalization. Other concepts, such as the variety of 2-D signal transformations, may be developed from their form 1-D counterparts.
Pattern Recognition
Classically, a pattern recognition system is used for either pattern classification or pattern description. A simplistic view of a general pattern recognition system is shown.
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If the transducer is an image sensor and the goal of the computer vision system is classification or description, pattern recognition techniques may be employed. An example is in the segmentations of images with no apriori knowledge of image characteristics using an unsupervised learning approach. (see image analysis)
Computer graphics

There is a clear and inverse like relationship. This is shown in the following figure
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a- Low level Image processing
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b- High  level Image processing
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c- Computer graphics

Whereas the objective of image description is to develop an understanding of the scene contents contained in the image, computer graphs is an area where the objective is to take the description of scene and generate the appropriate image
AI

Computer vision, specifically image understanding is an area that is often considered to be subhelds of artificial intelligence
 Notes

A complex matrix F, with complex conjugate matrix F* may be said to be :
1- Hermition, if         ( F*)T = F 

2- Unitary, if               F-1   =        ( F*)T

Image Grey level Modeling and Early processing, Fundamentals



Image processing
Transform and sampling
The 2-D Discrete Fourier Transform (DFT)
Consider a 2-D Image function matrix [ f ], written as N x N matrix:

[ F ] = [image: image1000.png]1(0,0)
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The 2-D  DFT is then
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Note that, the scale facto (1/N2) has been distributed equally between the DFT and the DIFT. This is a matter of convenience; it is equally valid to formulate these transforms distributing the scale factor differently.

Other 2-D Transforms

The DFT has many useful properties and applications in image processing, however, it has one significant computational drawback: complex separation are required in both the DFT and the DIFT.

It is useful to seek similar linearly transforms implemented via pre- and- post- multiplication of  [ f ] by transform matrices.

 We therefore seek a transform of the form

[ F ] = P  [ f ]  Q              …                            ( 4 )

With the following characteristics:

1- it has some useful properties ( e.g. , the transformed version of an image function displays information that was not immediately apparent by examining [ f ].

2- it may be implemented via real, or perhaps even integer, arithmetic operations. This means that P and Q are real matrices in  (4).

3- the inverse of this transform, that is [ f ] is recovered via 

                            [ f ] = P -1  [ F ] Q -1                                    …       ( 5 )

This required P -1 and Q -1 to be easily formed, without matrix inversion.

Although there exist a multitude of transforms that satisfy the above criteria, we concentrate on Walsh – hadmard transform.

The Walsh- Hadmard transform

The Hadmard transform may be developed in the matrix form of eq. (4) through the N X N Hadmard matrix H, as

[ F H ] = H [ f ] H                …                         ( 6 )

In this case    P  [image: image1005.png]



Starting with N = 2,

H is a matrix whose columns are orthogonal and comprised of elements whose value is either -1 or +1.

For N =2
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Where    I, j   [image: image1008.png]


   [0, 1]        …       ( 7 )

Is given by      [image: image1010.png]hy (1,j)= (—1)¥




Given a Hadmard matrix of order N, Hadmard matrices of higher order may be generated by a simple recursive formulation 

[image: image1011.png]= [Hv Hy ]
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Thus, we often normalize [image: image1013.png]


  to achieve orthonormal columns in the transfer matrix, H, that is,

[image: image1015.png]


          …         ( 9 )

· Due to the orthogonality of the columns of [image: image1016.png]


[image: image1018.png]


 , is easily shown that
 = NI                              ….                               (10)    [image: image1020.png]



Let  us examine an normalized Hadmard transform matrix of order N 8.

Applying, ( 8 ) recursively (twice ) starting with N = 2, yields
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Equivalently, we may define H, as a matrix whose (i, j)*™ element, hy(i, )

where i,j €[0, 1]

is given by
hai, ) = (=17 (€Y

Given a Hadamard matrix of order N, Hadamard matrices of higher order may be
generated by the simple recursive formulation

It is left to the reader to verify that Hadamard matrices of order N > 2 are symmetric.

and have orthogonal columns, using Egs. 3-70 and 3-72.
Due to the orthogonality of the columns of Hy, it is easily shown that

HyHy = NI G-

Thus, we often normalize Hy to achieve orthonormal columns in the transf

matrix, H; that is,

1
H= [_\/ﬁ] Hy (3

Let us examine an unnormalized Hadamard transform matrix of order N =
Applying Eq. 3-72 recursively (twice), starting with N = 2, yields

R S,
e )
Hy =T e
T

(3

and 2
1 1 1 il 1 1 1 il

1 =1 i =1 1 =1 . =it

1 1 =1 =l 1 1 =1 =1

1 =1, -1 il 1 -1 =4 1

Hy = 1} 1 1 1 -1 -1 -1 -1

ik —1 1 = =1 L= 1

1 1 =l =i —1 =3 1 it

1 =1 = 1 -1 1 1 —1

Notice from Eq. 3-75 that the major characteristic or property of each col
Hy is the number and spatial arrangement of sign transitions. This is shown
circled entries under the columns of Eq. 3-75. (A transition is defined as 2





Notice from ( 8), that the major property of each column of H8 is the number and spatial arrangement of sign transition, this is shown via the circled entries.

Although we could analyze this transform with the columns ordered as in (12), a more useful conceptual formulation results, if we arrange the columns in order of increasing sequence, yielding an unnormalized Walsh transform matrix of order 8, by reordering the columns as:
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Notice, this matrix may easily be normalized to achieve orthogonal columns using a process equivalent to eq. ( 9).

The Walsh transform results by using a normalized and sequence ordered Hadmard transform matrix, denoted W, as

           [ F ] = W [ f ] W      ….                      ( 14 )

That yields:

         [ f ] = W  [ F ] W    ……                            ( 15 )

Sampling

Since we are dealing with discrete (perhaps sampled both spatially and temporally image data, the consequence of discrete nature of the data are of interest,

Starting from the sampling view point allows the introduction of new concepts, such as:

1- The geometric arrangement of the sampling lattice.

2- The use of multidimensional interpolation function, and

2- The visual effects of aliasing in space and time.

Sampling from the spatial Domain view point

The selection of a spatial sampling lattice shape or arrangement may be guided by concerns other than aliasing. For example, consider the measurement of concentric circular objects, with a circular sampling grid consisting of samples taken at spatial locations:

X  =  k cos ( n [image: image1024.png]Ad)




Y  =  k  sin ( n [image: image1026.png]Ad)




Where k = 0, 1, 2, …     , kmax    and   n=0, 1, 2,   ….,   ( [image: image1028.png]


  - 1 ) 

For predetermined camera geometry, this spatial sampling grid reflects the shape of the imaged object.

Temporal sampling

Suppose the 1-D image is a moving cosine function that  results in a 2-D function of x and t as     f(x, t) = f ( x . [image: image1030.png]


t , 0),

Where  f ( x, 0) = cos x

For simplicity the constant velocity of the moving object wave is [image: image1032.png]


 = π /2 pixal units / second.
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Enhancement and Restoration

A number of low level algorithmic approaches for the enhancement or restoration of images are developed, the majority of which are related to image "edge" information.

Spatial – smoothing operators (filters)

Spatial smoothing filters are typically used for noise removal and reduction of effects due to under sampling (thus they serve as simplified interpolation functions).The simplest example of smoothing filter is one that employs spatial neighborhood averaging and may be formulated as a linear operation on the input image of the form g(x, y) = O [ f ( x, y) ], which may be quantified mathematically as:

[image: image1035.png]g (xy) = 3 X f (mn)



             …                              (4-1)

Where S is an M pixel neighborhood of points surrounding ( and perhaps including) the point (x, y).

Often S is a rectangular neighborhood of ( x, y)- for example an n x n square.

The smoothing operator of (4.1) for the case of this n x n window is formulated

[image: image1036.png]mn/z2  n/2
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Filtering as a "window" operator
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Where hsm ( I, j) is the smoothing function, whose nonzero values in region S are given by:

[image: image1039.png]hom (1,1 = -



 . In the case of n= 3, the output image function is the  correlation of 3x3 window function           1/9           1/9              1/9

                                             1/9           1/9              1/9

                                              1/9           1/9              1/9

With the image function  f( x, y) for all ( x, y) locations (neglecting "edge" effects in the image plane.

Temporal smoothing operators (filters)

Whereas the previous discussion concerned spatial smoothing, this approach may be extended to time varying imagery.

Assume a noise effect model of the form 

[image: image1040.png]fi'(x)=f (x)+ m; (x)




Where    [image: image1042.png]fi' (x)



  represents a noise corrupted image and mi(x) is the noise process at spatial location x.

Assuming a zero mean, time uncorrelated noise process, a suitable smoothing operation on an ensemble of images M ( whose time changes are due only to the noise process) of the form

[image: image1043.png]sCO=5 D F)
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is desirable.

This average operation therefore reduces the noise effects in g(x) by reducing the variance of the averaged noise process.

Spatial sharpening operators (filters)

Another window based operator is the sharpening operator or high pass filter primary applications of this filter are high frequency emphasis or edge enhancement.

One edge enhancement technique, known as unsharp masking, produces the enhanced image g( x, y) from the input image f( x, y) via 

G ( x, y) = f ( x, y) – fsm ( x, y)

  Where fsm ( x, y) is a smoothed version of f ( x, y).

RANK ( and MEDIAN) filters

Median filters are a subset of the class of rank filters where the output image intensity at spatial location x ( x, y)T    is chosen on the basis of the relative rank intensity of the pixels in the neighborhood of x.

Conversion of Grey level to binary images

Conversion of Grey level to  binary representation, is important for a number of reasons:

1. To identify the extent of objects, represented as a region in the image.

2. To concentrate on shape ( or morphological ) analysis in which case the intensities of pixels are less significant than the shape.

3. To display an image on an output device which has only one bit intensity resolution, such as printers.

4. To convert an edge enhanced image to a line drawing of the imaged scene.

[image: image1044.png]fq(s):{A if filx) =T
B if ix)> T




Fi      input image function

Fo    output image function

This is a global image thresholding.

Image compression and coding techniques

The heart of any of the image compression techniques centers on two entities

1. The development of an image representation that rewaves a significant amount of the inferent redundancy in the image data. From a statistical view point, we seek a transformation of the image data such that the transformed image consists, ideally, of uncorrelated data.

2. The achievement of a reconstruction scheme, together with the chosen compression technique, is chosen to minimize subjective distortion in the resulting image.

Transform Approach

Global and block transform
If the majority of the image content could be represented using relatively few of (some) transform basis functions, the image could be transmitted or achieved in transformed form, with a significant data reduction.

Other approaches partition the image into smaller regions, or blocks, and encode these blocks of local data. Block coding of data usually results in greater success, since the likelihood of small block containing highly correlated data is probably greater in a local region than over the entire image.

DCT, wavelet, run length encoding ( where pixel intensities are not stored or transmitted individually, but rather on a given time).

Projections and Reconstruction

The objective of reconstruction from projections is  to reconstruct either a 2-D (image) or 3-D (object function) from a finite number of either 1-D (line) or 2-D (image) projections, respectively.

Feature extraction is one of the computer vision levels (lower –level) The problem of image analysis from a model based view point is shown in the following figure. 
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